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"What does that mean–’tame’?"
"It is an act too often neglected," said the fox. It means to establish ties."
"’To establish ties’?"
"Just that," said the fox. "To me, you are still nothing more than a little boy who is just like a
hundred thousand other little boys. And I have no need of you. And you, on your part, have no
need of me. To you, I am nothing more than a fox like a hundred thousand other foxes. But if
you tame me, then we shall need each other. To me, you will be unique in all the world. To
you, I shall be unique in all the world . . ." [...]
The fox gazed at the little prince, for a long time.
"Please–tame me!" he said.
"I want to, very much," the little prince replied. "But I have not much time. I have friends to
discover, and a great many things to understand."
"One only understands the things that one tames," said the fox. "Men have no more time to un-
derstand anything. They buy things all ready made at the shops. But there is no shop anywhere
where one can buy friendship, and so men have no friends any more. If you want a friend,
tame me . . ."
"What must I do, to tame you?" asked the little prince.
"You must be very patient," replied the fox. "First you will sit down at a little distance from
me–like that–in the grass. I shall look at you out of the corner of my eye, and you will say
nothing. Words are the source of misunderstandings. But you will sit a little closer to me,
every day . . ." [...]
So the little prince tamed the fox. And when the hour of his departure drew near–
"Ah," said the fox, "I shall cry."
"It is your own fault," said the little prince. "I never wished you any sort of harm; but you
wanted me to tame you . . ." [...]
"Men have forgotten this truth," said the fox. "But you must not forget it. You become respon-
sible, forever, for what you have tamed. "

The Little Prince (Antoine de Saint-Exupery, 1943).
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A`c‚k‹n`o“w˝l´e´d`g´e›m`e›n˚tṡ

I˚t ”wˆo˘u˜l´dffl ”n`o˘t ˛h`a‹vfle ˜bfle´e›nffl ¯p`oşfi¯sfi˚i˜b˝l´e ˚t´o ”w˘r˚i˚t´e ˚t‚h˚i¯s `d`oˆcˇt´o˘r`a˜l ˚t‚h`eṡfi˚i¯s ”w˘i˚t‚h`o˘u˚t ˚t‚h`e
˛h`e¨lṗffl `a‹n`dffl ¯sfi˚u¯p¯p`o˘r˚t `o˝f `a˜l¨l ˚t‚h`e ˛k˚i‹n`dffl ¯p`e´op̧˜l´e `a˚r`o˘u‹n`dffl ”m`e - ˚t´o `o“n˜l›y ¯sfi`o“m`e `o˝f
”w˝h`o“mffl ˚i˚t ˚i¯s ¯p`oşfi¯sfi˚i˜b˝l´e ˚t´o `gˇi‹vfle ¯p`a˚r˚tˇi`cˇu˜l´a˚rffl ”m`e›n˚tˇi`o“nffl ˛h`eˇr`e.

A˜bˆo“vfle `a˜l¨l, ˚t‚h˚i¯s ˚t‚h`eṡfi˚i¯s ”wˆo˘u˜l´dffl ”n`o˘t ˛h`a‹vfle ¯sfi`e´e›nffl ˚t‚h`e ˜lˇi`g‚h˚t `o˝f `d`a‹y ”w˘i˚t‚h`o˘u˚t ˚t‚h`e
`gˇu˚i`d`a‹n`c´e `o˝f ”m‹y ¯p˚r˚i‹n`cˇi¯p`a˜l ¯sfi˚u¯p`eˇr‹v˘i¯sfi`o˘rffl, P̊r`o˝f. B`oˆa¯s E˚r`eˇz. I `a‹mffl `gˇr`a˚t´e¨fˇu˜l
˚t´o ˛h˚i‹mffl ˜bfle´c´a˚u¯sfi`e ˛h`e `g´a‹vfle ”m`e `affl ¯sfi˚u˜bj̧´e´cˇt I ˚r`e´a˜l¨l›y ˜lˇi˛k`e´dffl, ˛h`e ˚i‹n˚tˇr`oˆd˚u`c´e´dffl ”m`e ˚t´o
˚t‚h`e ”m`a˚t‚h`e›m`a˚tˇi`c´a˜l ˚r`eṡfi`e´a˚r`c‚hffl ”wˆo˘r˜l´dffl `a‹n`dffl ˚t´a˚u`g‚h˚t ”m`e ˛h`o“w ˚t´o ˜bfle´c´o“m`e ˚i‹n`d`eṗ`e›n`d`e›n˚t.
T‚h`e `a`d‹v˘i`c´e, ¯p`a˚tˇi`e›n`c´e `a‹n`dffl ¯sfi˚u¯p¯p`o˘r˚t `o˝f ”m‹y ¯sfi`e´c´o“n`dffl ¯sfi˚u¯p`eˇr‹v˘i¯sfi`o˘rffl, P̊r`o˝f. M`a˚r`c´o
G´a˚r˚u˚tˇiffl, ˛h`a‹vfle `a˜lṡfi`o ˜bfle´e›nffl ˚i‹n‹vˆa˜lˇu`a˜b˝l´e. D˚u˚r˚i‹n`g ˚t‚h`e ˜l´o“n`g ”wˆo˘r˛k˚i‹n`g ¯sfi`eṡfi¯sfi˚i`o“n¯s ˚t´o-
`g´eˇt‚h`eˇrffl, I ˛h`a‹vfle ˜l´e´a˚r‹n`e´dffl ˛h`o“w ˚t´o `d`o ˚r`eṡfi`e´a˚r`c‚hffl `a‹n`dffl ˛h`o“w ˚t´o ˜l´e´a˚r‹nffl ˜fˇr`o“mffl ”m‹y
”m˚i¯sfi˚t´a˛k`eṡ. I `a˜lṡfi`o ˚t‚h`a‹n˛kffl ˛h˚i‹mffl ˜f´o˘rffl ˚t‚h`e ”wfle¨l´c´o“m`e I ˚r`e´c´eˇi‹vfle´dffl ”w˝h`e›nffl I `a˚r˚r˚i‹vfle´dffl ˚i‹nffl
P̀a`d`o“vˆaffl `a‹n`dffl ”m˚u`c‚hffl ”m`o˘r`e.

I `c´o“n¯sfi˚i`d`eˇrffl ˚i˚t `a‹nffl ˛h`o“n`o˘rffl ˚t´o ˛h`a‹vfle ”wˆo˘r˛k`e´dffl ”w˘i˚t‚hffl A”n`g´e¨l´o V˚i¯sfi˚t´o˝lˇiffl, `eṡfi¯p`e´cˇi`a˜l¨l›y
`d˚u˚r˚i‹n`g ”m‹y ”v˘i¯sfi˚i˚t ˚i‹nffl P̊i¯sfi`affl ˚i‹nffl Ǹo“vfle›m˜bfleˇrffl 2012. I `a‹mffl `e›xˇtˇr`e›m`e¨l›y `gˇr`a˚t´e¨fˇu˜l
`a‹n`dffl ˚i‹n`d`e¨b˘t´e´dffl ˚t´o ˛h˚i‹mffl, ”n`o˘t `o“n˜l›y ˜f´o˘rffl ˜bfleˇi‹n`g ”m‹y ˚t‚h`eṡfi˚i¯s ˚r`e¨f´eˇr`e´e, `e›vfle›nffl ”m`o˘r`e ¯sfi`o,
˜f´o˘rffl ˚t‚h`e ¯sfi˚i‹n`c´eˇr`e `gˇu˚i`d`a‹n`c´e `a‹n`dffl ”vˆa˜lˇu`a˜b˝l´e ˛k‹n`o“w˝l´e´d`g´e ˛h`e `e›xˇt´e›n`d`e´dffl ˚t´o ”m`e. I `a˜lṡfi`o
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”w˝h`o˝l´e‚h`e´a˚r˚t´e´d˜l›y ˚t‚h`a‹n˛kffl ˛h˚i¯s ¯sfi˚tˇu`d`e›n˚t, F̀a˜b˘i`o, ”w˝h`o ”wˆa¯s ˚i‹m‹m`e›n¯sfi`e¨l›y ˛h`e¨lṗ˜fˇu˜l ˜bˆo˘t‚hffl
`a¯s `affl ˜fˇr˚i`e›n`dffl `a‹n`dffl `affl `gˇr`e´a˚t ”m`a˚t‚h`e›m`a˚tˇi`cˇi`a‹nffl ˜b˘u˚t `a˜lṡfi`o I”vˆa‹nffl, A˚u`gˇu¯sfi˚t´o, S̊i‹m`o“n`e,
`a‹n`dffl F̀e´d`eˇr˚i`c´o ˜f´o˘rffl ˚t‚h`eˇi˚rffl ”wˆa˚r‹mffl ˛h`oşfi¯p˚i˚t´a˜lˇi˚t›y `a‹n`dffl ”m`e›m`o˘r`a˜b˝l´e `c´o“m¯p`a‹n‹y ˚i‹nffl P̊i¯sfi`affl.

I˚t `a˜lṡfi`o `gˇi‹vfleṡ ”m`e `gˇr`e´a˚t ¯p˜l´e´a¯sfi˚u˚r`e ˚i‹nffl `a`c‚k‹n`o“w˝l´e´d`gˇi‹n`g ˚t‚h`e ¯sfi˚u¯p¯p`o˘r˚t `o˝f P̊r`o˝f.T`e´dffl
C‚h˚i‹n˜b˘u˚r`g, ”w˝h`o `a`gˇr`e´e´dffl ˚t´o ˜bfle `o“n`e `o˝f ”m‹y ˚r`e¨f´eˇr`e´eṡ, `a¯s ”wfle¨l¨l `a¯s ˚t´o ˜bfle ¯p`a˚r˚t `o˝f
”m‹y ˚t‚h`eṡfi˚i¯s `c´o“m‹m˚i˚tˇt´e´e. T‚h`e `e›n`c´o˘u˚r`a`g´e›m`e›n˚t `a‹n`dffl ˚t‚h`e ˛h`e¨lṗffl ˛h`e `g´a‹vfle ”m`e `d˚u˚r˚i‹n`g
˚t‚h`eṡfi`e ˜l´a¯sfi˚t ”m`o“n˚t‚h¯s ”w˘i˜l¨l ”n`e›vfleˇrffl ˜bfle ˜f´o˘r`g´o˘tˇt´e›nffl. I ”w˘i¯sfi˛hffl ˚t´o `e›xṗ˚r`eṡfi¯s ”m‹y ¯sfi˚i‹n`c´eˇr`eṡfi˚t
`a¯p¯p˚r`e´cˇi`a˚tˇi`o“nffl ˚t´o `a‹n`o˘t‚h`eˇrffl ”m`e›m˜bfleˇrffl `o˝f ”m‹y `c´o“m‹m˚i˚tˇt´e´e, P̊r`o˝f. J´e´a‹nffl Gˇi˜l¨lˇi˜bfleˇr˚t,
˜f´o˘rffl ˛h˚i¯s ˛h`e¨lṗ˜fˇu˜l `a`d‹v˘i`c´eṡ `d˚u˚r˚i‹n`g ”m‹y P‚hD. I˚t ˚i¯s ˚i‹m¯p`oşfi¯sfi˚i˜b˝l´e ˚t´o ˜f´o˘r`g´eˇt ˚t´o ˚t‚h`a‹n˛kffl
P̊r`o˝f. J´e´a‹nffl F̊r`eṡfi‹n`e¨l ˜f´o˘rffl ˛k`e´eṗ˚i‹n`g ”m`e ”m`o˘tˇi‹vˆa˚t´e´dffl ¯sfi˚i‹n`c´e ˚t‚h`e ˜bfle´gˇi‹n‹n˚i‹n`g `o˝f ”m‹y
`d`oˆcˇt´o˘r`a˜l ¯j´o˘u˚r‹n`e›y. I `a˜lṡfi`o `d`e´eṗ˜l›y ˚t‚h`a‹n˛kffl P̊r`o˝f. P̊i`eˇr˚r`e D`è¨bfleṡ `a‹n`dffl P̊r`o˝f. B˚r˚u‹n`o
C‚h˚i`a˚r`e¨l´o˘tˇt´o ˜f´o˘rffl `a`c´c´eṗ˚tˇi‹n`g ˚t´o ˜bfle ¯p`a˚r˚t `o˝f ”m‹y `c´o“m‹m˚i˚tˇt´e´e. I ”wˆo˘u˜l´dffl ˜lˇi˛k`e ˚t´o ˚t‚h`a‹n˛kffl,
”w˘i˚t‚hffl `eṡfi˚t´e´e›mffl `a‹n`dffl ˚r`eṡfi¯p`e´cˇt, ˚t‚h`e ¯p˚u‹n`cˇtˇu`a˜l `a‹n`dffl ˚i‹n`d˚i¯sfi¯p`e›n¯sfi`a˜b˝l´e `c´o˘u‹n¯sfi`e¨l `a‹n`dffl ˛h`e¨lṗffl
`o˝f P̊r`o˝f. Q˚i‹n`g L˚i˚uffl, D˚rffl. D`a¯j´a‹n`o T`oşfi¯sfi˚i`cˇiffl, P̊r`o˝f. E˚r˚i`c C‚h`a˚r¯p`e›n˚tˇi`eˇrffl, P̊r`o˝f. Yˇu˚r˚iffl
B˚i˜lˇuffl, S̊i˚rffl M`a˚r˚tˇi‹nffl T`a‹y¨l´o˘rffl, P̊r`o˝f. P‚h˚i˜lˇi¯p¯p`e C`a¯sfi¯sfi`o˘uffl-Ǹoˆgˇu`èṡ, D˚rffl. B`a¯p˚tˇi¯sfi˚t´e
M`o˘r˚i‹nffl, P̊r`o˝f. M`a˚tˇt‚h˚i`eˇuffl R`o“m`a`g›n‹y `a‹n`dffl P̊r`o˝f. B˚r˚i`a‹nffl C`o“n˚r`a`dffl.

I ˚t´a˛k`e ˚t‚h˚i¯s `op̧¯p`o˘r˚tˇu‹n˚i˚t›y ˚t´o `a`c‚k‹n`o“w˝l´e´d`g´e ˚t‚h`e ˜fˇi‹n`a‹n`cˇi`a˜l `a‹n`dffl `a`c´a`d`e›m˚i`c ¯sfi˚u¯pffl-
¯p`o˘r˚t `o˝f ˚t‚h`e U”n˚i‹vfleˇr¯sfi˚i˚t›y `o˝f B`o˘r`d`e´a˚u‹x `a‹n`dffl ˚t‚h`e U”n˚i‹vfleˇr¯sfi˚i˚t›y `o˝f P̀a`d`o“vˆaffl, `a¯s
”wfle¨l¨l `a¯s ˚t‚h`e `g´oˆoˆdffl ”wˆo˘r˛kffl `o˝f ˚t‚h`e D`eṗ`a˚r˚t›m`e›n˚t ¯sfi`e´cˇr`eˇt´a˚r˚i`eṡ: C‚h˚r˚i¯sfi˚tˇi‹n`e P̀a˚r˚i¯sfi`o“nffl `a‹n`dffl
K`a˚r˚i‹n`e L`e´cˇu`o“n`affl. I `a‹mffl `a˜lṡfi`o `gˇr`a˚t´e¨fˇu˜l ˚t´o ˚t‚h`e ˚u‹n˚i‹vfleˇr¯sfi˚i˚t›y F̊r`a‹n`c´o-˚i˚t´a˜lˇi`e›n‹n`e `a‹n`dffl
A˜l´g´a‹n˚t, ”w˝h˚i`c‚hffl `o˝fˇt´e›nffl ¯p˚r`o“v˘i`d`e´dffl ”m`e ”w˘i˚t‚hffl ˜fˇi‹n`a‹n`cˇi`a˜l ¯sfi˚u¯p¯p`o˘r˚t ˜f´o˘rffl `c´o“n˜f´eˇr`e›n`c´eṡ,
`a‹n`dffl ˚t´o ˚i˚tṡ `e¨f¨fˇi`cˇi`e›n˚t ¯p`eˇr¯sfi`o“n‹n`e¨l, C‚h˚r˚i¯sfi˚t´op̧˛h`eˇrffl N˚i`eṡfi`e›nffl `a‹n`dffl V˚i˚r`gˇi‹n˚i`e B˚i`e¨l´e›n`d`affl.
I `a˜lṡfi`o ˚t‚h`a‹n˛kffl `o˘u˚rffl ˜lˇi˜b˘r`a˚r˚i`a‹nffl, C”yˇr˚i˜l M`a˚u‹v˘i˜l¨l´a˚i‹nffl, ˜f´o˘rffl `a˜l›wˆa‹yṡ ˜bfleˇi‹n`g ˛k˚i‹n`dffl `a‹n`dffl
`a‹vˆa˚i˜l´a˜b˝l´e.

I `o“wfle ”m‹y `d`e´eṗ`eṡfi˚t `gˇr`a˚tˇi˚tˇu`d`e ˚t´o `a˜l¨l ”m‹y `c´o˝l¨l´e´a`gˇu`eṡ `a‹n`dffl `g´oˆoˆdffl ˜fˇr˚i`e›n`d¯s `a˚t
˚t‚h`e U”n˚i‹vfleˇr¯sfi˚i˚t›y `o˝f B`o˘r`d`e´a˚u‹x. F̊i˚r¯sfi˚t `o˝f `a˜l¨l, ˚t´o ”m‹y `o˝f¨fˇi`c´e›m`a˚t´e, A”n`d˚r`e´affl, `affl
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`gˇr`e´a˚t `c´oˆo˘r`g´a‹n˚i˚z´eˇrffl, ”w˘i˚t‚hffl `g´oˆoˆdffl `a`d‹v˘i`c´eṡ `a‹n`dffl ˚tˇi˚r`e¨l´eṡfi¯sfi˜l›y ˜l´oˆo˝k˚i‹n`g ˜f´o˘rffl ¯sfi˚tˇi‹m˚u˜l´a˚tˇi‹n`g
`c´o“n˚t´a`cˇtṡ `a‹m`o“n`g ˚t‚h`e P‚hD ¯sfi˚tˇu`d`e›n˚tṡ ˚i‹nffl ˚t‚h`e D`eṗ`a˚r˚t›m`e›n˚t; Gˇi`o“vˆa‹n‹n˚iffl `a‹n`dffl B˚r˚u‹n`o
˜f´o˘rffl ˜bfleˇi‹n`g `gˇr`e´a˚t ˚t´a‹n`g´o ¯p`a˚r˚t›n`eˇr¯s ˚t´oˆo; N˚i`c´o˝l´affl `dffl.P. ˜f´o˘rffl ˛h˚i¯s ”w˘i¯sfi`d`o“mffl; N˚i`c´o˝l´affl
M. ˜f´o˘rffl ˚t‚h`e I˚t´a˜lˇi`a‹nffl ˜l´e´cˇtˇu˚r`e ¯sfi`eṡfi¯sfi˚i`o“n¯s; S̀a‹m˚u`e¨l´e ˜f´o˘rffl `a˜l¨l ˚t‚h`e ˜bfle´a˚u˚tˇi˜fˇu˜l `d˚i‹n‹n`eˇr¯s
˛h`e `c´oˆo˝k`e´dffl ˜f´o˘rffl ˚u¯s; A˜l¨bfleˇr˚t´o P. ˜f´o˘rffl `a˜l¨l ˚t‚h`e `c´o˝f¨f´e´e ˜b˘r`e´a˛k¯s; P̊i`eˇr˚r`e L. ˜f´o˘rffl `a˜l¨l ˚t‚h`e
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Abstract

The purpose of this thesis is to understand how to generalize the ramification theory for
actions by affine group schemes with a particular interest for the notion of tameness. As
general context for this summary, we consider an affine basis S := Spec(R) where R is a
commutative, unitary ring, an affine, finitely presented, Noetherian scheme X := Spec(B)
over S, a flat, finitely presented, affine group scheme G := Spec(A) over S and an action of
G on X that we denote by (X, G). Finally, we denote [X/G] the quotient stack associated
to this action and we set Y := Spec(BA) where BA is the ring of invariants for the action
(X, G). Moreover, we suppose that the inertia stack is finite.
As reference point, we take the classical theory of ramification for rings endowed with an
action of a finite, abstract group. In order to understand how to generalize this theory for
actions of group schemes, we consider the actions of constant group schemes knowing that
the data of such actions is equivalent to the data of rings endowed with an action of a finite
abstract group, this being the classical case. We obtain thus in this new context notions
generalizing the ring of invariants as a quotient, the inertia group and all their properties.
The unramified case is generalized naturally by the free actions. For the tame case, which
interests us particularly here, two generalizations are proposed in the literature: the one of
tame actions of affine group schemes introduced by Chinburg, Erez, Pappas et Taylor in the
article [CEPT96] and the one of tame stacks introduced by Abramovich, Olsson and Vistoli
in [AOV08]. It was then natural to compare these two notions and to understand how to
generalize the classical properties of tame objects for the actions of affine group schemes.
First of all, we traduced algebraically the tameness property on a quotient stack as the
exactness of the functor of invariants. This permits to obtain easily thanks to [CEPT96]
that tame actions define always tame quotient stacks. For the converse, we only manage to
prove it when we suppose G to be finite, locally free over S and X flat over Y . We are able
to see that the notion of tameness for a ring endowed with an action of a finite, abstract
group Γ is equivalent to the fact that all the inertia group schemes at the topological points
are linearly reductive if we consider the action of the constant group scheme corresponding
to Γ over X. It was thus natural to wonder if this property was also true in general. In fact,
the article [AOV08] characterizes the fact that the quotient stack [X/G] is tame by the fact
that the inertia group schemes at the geometric points are linearly reductive.
Again, if we consider the case of rings endowed with an action of a finite, abstract group,
it is well known that these actions can be totally reconstructed from an action involving
an inertia group. When we consider actions by constant group schemes, this is translated
as a slice theorem, that is, a local description of the initial action by an action involving
an inertia group. For example, we establish that the fact that an action is free is a
"local property" for the fppf topology and this can be translated also as a "local" slice
theorem. Thanks to [AOV08], we already know that a tame quotient stack [X/G] is locally
isomorphic for the fppf topology to a quotient stack [X/H], where H is an extension of
the inertia group in a point of Y . When G is finite over S, it was possible to show that
H is also a subgroup of G. In this thesis, it was not possible to obtain a slice theorem in
this generality. However, when G is commutative, finite over S, it is possible to prove the
existence of a torsor, if we suppose [X/G] to be tame. This permits to prove a slice theorem
when G is commutative, finite over S and [X/G] is tame.
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Résumé en Français:

Ramification modérée pour des actions de schémas en groupes affines et pour des champs
quotients

L’objet de cette thèse est de comprendre comment se généralise la théorie de la ramification pour des
actions par des schémas en groupes affines avec un intérêt particulier pour la notion de modération.
Comme contexte général pour ce résumé, considérons une base affine S := Spec(R) où R est un anneau
unitaire, commutatif, X := Spec(B) un schéma affine sur S, G := Spec(A) un schéma en groupes affine,
plat et de présentation finie sur S et une action de G sur X que nous noterons (X, G). Enfin, nous notons
[X/G] le champ quotient associé à cette action et Y := Spec(BA) où BA est l’anneau des invariants pour
l’action (X, G). Supposons de plus que le champ d’inertie soit fini.
Comme point de référence, nous prenons la théorie classique de la ramification pour des anneaux munis
d’une action par un groupe fini abstrait. Afin de comprendre comment généraliser cette théorie pour des
actions par des schémas en groupes, nous considérons les actions par des schémas en groupes constants
en se rappelant que la donnée de telles actions est équivalente à celle d’un anneau muni d’une action par
un groupe fini abstrait nous ramenant au cas classique. Nous obtenons ainsi dans ce nouveau contexte
des notions généralisant l’anneau des invariants en tant que quotient, les groupes d’inertie et toutes leurs
propriétés. Le cas non ramifié se généralise naturellement avec les actions libres. En ce qui concerne le cas
modéré, qui nous intéresse particulièrement pour cette thèse, deux généralisations sont proposées dans la
littérature. Celle d’actions modérées par des schémas en groupes affines introduite par Chinburg, Erez,
Pappas et Taylor dans l’article [CEPT96] et celle de champ modéré introduite par Abramovich, Olsson
et Vistoli dans [AOV08]. Il a été alors naturel d’essayer de comparer ces deux notions et de comprendre
comment se généralisent les propriétés classiques d’objets modérés à des actions par des schémas en
groupes affines.
Tout d’abord, nous avons traduit algébriquement la propriété de modération sur un champ quotient
comme l’exactitude du foncteur des invariants. Ce qui nous a permis d’obtenir aisément à l’aide de
[CEPT96] qu’une action modérée définit toujours un champ quotient modéré. Quant à la réciproque,
nous avons réussi à l’obtenir seulement lorsque nous supposons de plus que G est fini et localement
libre sur S et que X est plat sur Y . Nous pouvons voir que la notion de modération pour l’anneau B

muni d’une action par un groupe fini abstrait Γ est équivalente au fait que tous les groupes d’inertie
aux points topologiques sont linéairement réductifs si l’on considère l’action par le schéma en groupes
constant correspondant à Γ sur X. Il a été donc naturel de se demander si cette propriété est encore vraie
en général. Effectivement, l’article [AOV08] caractérise le fait que le champ quotient [X/G] est modéré
par le fait que les groupes d’inertie aux points géométriques sont linéairement réductifs.
À nouveau, si l’on considère le cas des anneaux munis d’une action par un groupe fini abstrait, il est bien
connu que l’action peut être totalement reconstruite à partir de l’action d’un groupe inertie. Lorsque l’on
considère le cas des actions par les schémas en groupes constants, cela se traduit comme un théorème de
slices, c’est-à-dire une description locale de l’action initiale par une action par un groupe d’inertie. Par
exemple, lorsque G est fini, localement libre sur S, nous établissons que le fait qu’une action soit libre
est une propriété locale pour la topologie fppf, ce qui peut se traduire comme un théorème de slices.
Grâce à [AOV08], nous savons déjà qu’un champ quotient modéré [X/G] est localement isomorphe pour
la topologie fppf à un champ quotient [X/H] où H est une extension du groupe d’inertie en un point
de Y . Lorsque G est fini sur S, il nous a été possible de montrer que H est aussi un sous-groupe de
G. Dans la présente thèse, il n’a pas été possible d’obtenir un théorème de slices dans cette généralité.
Cependant, lorsque G est commutatif, fini sur S, il est possible de montrer l’existence d’un torseur, si
l’on suppose que le champ quotient soit modéré. Ceci nous a permis de prouver un théorème de slices
lorsque G est commutatif, fini sur S et [X/G] est modéré.
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Riassunto in Italiano:

Ramificazione moderata per azioni di schemi in gruppi affini e per stacks quoziente.

Lo scopo di questa tesi è capire come si generalizza la teoria della ramificazione per azioni di schemi
in gruppi affini con un interesse particolare per la nozione di moderazione. Come contesto generale per
questo riassunto, consideriamo una base affine S := Spec(R) dove R è un anello unitario e commutativo,
X := Spec(B) uno schema affine, noetheriano e di presentazione finita su S, G := Spec(A) uno schema in
gruppi affine, piatto e di presentazione finita su S e un’azione di G su X che denoteremo (X, G). Infine,
denotiamo con [X/G] lo stack quoziente associato a questa azione e Y := Spec(BA) dove BA è l’anello
degli invarianti per l’azione (X, G). Supponiamo inoltre che il campo d’inerzia sia finito.
Come punto di riferimento prendiamo la teoria classica della ramificazione per anelli muniti d’un’azione
d’un gruppo finito astratto. Al fine di comprendere come generalizzare questa teoria per azioni di schemi
in gruppi, consideriamo le azioni di schemi in gruppi costanti ricordando che il dato di tali azioni è
equivalente al dato d’un anello dotato d’un’azione d’un gruppo finito astratto, riconducendosi al caso
classico. Otteniamo così in questo nuovo contesto delle nozioni che generalizzano l’anello degli invarianti
in quanto quoziente, i gruppi d’inerzia e tutte le loro proprietà. Il caso non ramificato si generalizza in
modo naturale con le azioni libere. Per qual che riguarda il caso moderato, al quale siamo particolarmente
interessati in questa tesi, due generalizzazioni sono proposte nella letteratura: quella delle azioni moderate
di schemi in gruppi affini introdotta da Chinburg, Erez, Pappas e Taylor nell’articolo [CEPT96] e quella di
stack moderato introdotta da Abramovich, Olsson e Vistoli in [AOV08]. È stato quindi naturale cercare di
confrontare queste due nozioni e capire come si generalizzano le proprietà classiche degli oggetti moderati
ad azioni di schemi in gruppi affini.
Per cominciare, abbiamo tradotto algebricamente la proprietà di moderazione su un stack quoziente come
l’esattezza del funtore degli invarianti. Ciò ha permesso d’ottenere agevolmente, usando [CEPT96], che
un’azione moderata definisce sempre uno stack quoziente moderato. Quanto al viceversa, siamo riusciti
ad ottenerlo solamente sotto l’ulteriore ipotesi che G sia finito e localmente libero su S e che X sia piatto
su Y . Possiamo vedere che la nozione di moderazione per l’anello B dotato d’un’azione d’un gruppo
finito astratto Γ è equivalente al fatto che tutti i gruppi d’inerzia sui punti topologici siano linearmente
riduttivi se si considera l’azione dello schema in gruppi costante corrispondente a Γ su X. È stato quindi
naturale domandarsi se questa proprietà sia vera in generale. In effetti, l’articolo [AOV08] caratterizza il
fatto che lo stack quoziente [X/G] è moderato tramite il fatto che i gruppi d’inerzia sui punti geometrici
siano linearmente riduttivi.
Di nuovo, se consideriamo il caso degli anelli muniti d’un’azione d’un gruppo finito astratto, è ben
noto che quest’azione può essere totalmente ricostruita a partire da un’azione in cui interviene un
gruppo d’inerzia. Quando consideriamo il caso delle azioni degli schemi in gruppi costanti, questo
si traduce come un teorema di slices, cioè una descrizione locale dell’azione di partenza (X, G)
tramite un’azione in cui interviene un gruppo d’inerzia. Per esempio quando G è finito e localmente
libero su S, stabiliamo che il fatto che un’azione è libera è una proprietà locale per la topologia
fppf, ciò si può interpretare come un teorema di slices. Grazie a [AOV08] sappiamo già che uno
stack quoziente moderato [X/G] è localmente isomorfo per la topologia fppf a uno stack quoziente
[X/H], dove H è un’estensione d’un gruppo d’inerzia in un punto di Y . Quando G è finito su S è
stato possibile dimostrare che H è un sottogruppo di G. Nella presente tesi non è stato possibile
ottenere un teorema di slices in questa generalità. Tuttavia, quando G è commutativo e finito su S, è
possibile dimostrare l’esistenza d’un torsore se si suppone che lo stack quoziente è moderato. Questo ci
ha permesso di dimostrare un teorema di slices quando G è commutativo e finito su S e [X/G] è moderato.
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Introduction

The question of prime decomposition in a finite extension of fields motivates classical rami-
fication theory for field extensions. It takes a particularly interesting and important turn once
we assume this extension to be Galois leading to Hilbert’s ramification theory. Unramified
extensions can be completely understood in terms of extension of the residue field. General
ramification theory is a deep subject which is far from being completely understood. However,
tamely ramified extensions are only slightly more complicated and well understood. This notion
plays for instance an important role in Galois module theory.

Banard, in his article [Bar74], generalizes this well known theory for extensions of fields for
commutative rings endowed with an action of a finite abstract group action. Most classical
results have a good analogue permitting to extend ramification theory to this context. We can
pass directly to a geometric language via the study of the action by a constant group scheme
using extensions of rings yielding a ramification theory in arithmetic geometry. The purpose of
this thesis is to study how to generalize the notions related with ramification, their properties
and applications, in this algebro-geometric context. In this context, free actions take naturally
the role of unramified extensions. Two candidates to play the role of tame extensions exist
in the literature. One is the notion of tame actions by affine group schemes introduced in
[CEPT96] and the other is the notion of tame quotient stacks introduced in [AOV08].

For this introduction, as the general context, we consider an action of an affine group scheme
G finitely presented over S on an affine scheme X over S denoted by (X,G) with finite inertia
group stack I[X/G] in order to be able to define tameness for the quotient stack denoted by
[X/G] associated to this action.

Our contribution was first to translate algebraically the tameness defined in [AOV08] in the
particular case of the quotient stack. More precisely, we show that tameness for quotient stacks
induced by actions involving affine schemes is characterized by the exactness of the functor of
invariants induced by the action (Theorem IX.8). Naturally, then we wanted to establish a
connection between the two notions of tameness. Thanks to this algebraic characterization, we
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prove directly that under the general context in which tame quotient stacks are defined, a tame
action by an affine group scheme always induces a tame quotient stack (Theorem IX.15). On
the other hand, we manage to establish the converse only for actions by finite group schemes
with a flat quotient map over a noetherian base (Theorem IX.10). In particular, finite flat
linearly reductive group schemes (That is, group schemes inducing tame classifying spaces)
induce tame trivial actions (Corollary IX.12).

Applying Theorem IX.20 taken from [AOV08], we obtain that inertia groups at any topolog-
ical point under tame hypotheses are linearly reductive. More specifically, one can characterize
the tameness of the quotient stack by requiring the inertia group to be linearly reductive at
the geometric points. This answers partially to Question 3, §4 of [CEPT96]. The other in-
teresting aspect of this inertia groups’ description is that linearly reductive groups are fppf
locally explicitely described as a semi-direct product of a tame constant group scheme by a
diagonalizable group (Theorem VIII.13 recalling the classification of linearly reductive groups
done in [AOV08]). Thanks to this local description of linearly reductive group schemes, it is
possible to lift linearly reductive group schemes over the residue field k(p) at the prime ideal p,
fppf locally as a flat linearly reductive group scheme (Theorem VIII.17 in [AOV08]) which is
a really interesting property. We prove that in particular, if we have that a linearly reductive
group scheme H0 over the residue field k(p) at the prime ideal p is a subgroup of the pullback
G ×S k(p), we can lift H0 fppf locally as a subgroup of G (Theorem VIII.18). In particular,
this can be applied for inertia groups of a tame action .

We are still investigating on the existence of a slice theorem for tame quotient stacks.
Roughly speaking, fppf locally, an action which admits slices can be described by the action
of a "stabilizer of a point" which in our case is linearly reductive. This would be interesting
because under tame condition, we have seen that inertia groups are linearly reductive hence
locally simple. From [AOV08] (Theorem IX.20), we already know that a tame quotient stack
[X/G] is fppf locally isomorphic to a quotient stack [P/H] where H is a flat linearly reductive
lifting of some inertia group, and this can be seen as a "weak" slice theorem. But, we didn’t
manage yet to have really a Slice theorem under this general context. However, we managed to
establish some slice theorems, in some particular cases. For instance, we showed that freeness
is a local property for the fppf topology for G finite locally free group scheme over S and this
can be seen as a slice theorem (Theorem IX.18). Finally, we managed to prove also a slice
theorem when the group scheme G is commutative and finite over S (Theorem IX.27), after
showing the existence of a torsor (Proposition IX.23).

As starting point, we begin with recalling the ramification theory for commutative rings
endowed with an action of a finite abstract group (Chapter I). This will permit to clearly state
what we have been able or not to generalize. We took the opportunity to give an overview of
the classical ramification theory for field extensions (Chapter II), as a specialization of notions
and results of the first chapter.

The second part introduces the reader to the context that we are interested in. We generalize
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there the tools of ramification theory. After recalling the three equivalent ways to see actions
of affine group schemes, we define important notions attached to them as quotient, freeness,
induced actions or slices (Chapter III).

As it is well known, for a given action by a group scheme, categorical quotients in the
category of schemes don’t always exist, instead we can always define quotient stacks. Chapter
IV permits to introduce what we will need to know about these objects. (For the readers’
convenience, we have reviewed in Appendix B all the material on stacks required for under-
standing this thesis). The notion of tameness involves the important notion of inertia groups.
We devote Chapter V to this purpose generalizing the classical properties of inertia groups in
an algebro-geometric context that is not readily found in the literature. We will see that inertia
groups can be viewed as automorphism groups of the quotient stack which explains why it is
natural to define tameness on the quotient stack.

Having established the context, we can finally approach ramification theory (Part C). Chap-
ter VI defines the two notions of tameness. Considering actions by constant group schemes
(Chapter VII) permits to pass directly to the equivalent case of commutative rings endowed
with an action of a finite abstract group and understand why all the notions defined in the
algebro-geometric context generalize those of Chapter I. In Chapter VIII, we describe the in-
teresting class of group schemes inducing tame classifying stacks, the linearly reductive group
schemes. They will take an important role in our results thanks to their good properties. Fi-
nally, in Chapter X, we are able to state our main results mentioned before under a tameness
condition.
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Notations

Throughout the thesis, we fix the following notations.

We denote by R a commutative, unitary ring and S := Spec(R) stands for an affine base
scheme. Moreover all the considered algebras are commutative. All modules and algebras are
over R . All the schemes are supposed to be over S.

We denote MR (resp. RM) the category of the right (resp. left) R-modules. For M and N

two R-modules, we denote HomR(M,N) the sets of the morphisms of R-modules fromM to N .

If D is a ring and p is a prime ideal of D, Dp will denote the localisation of R with respect to
the multiplicative closed subset R\p. The isomorphic fields Dp/pDp and the field of fractions
of D/p will always be identified and denoted by k(p) and called the residue field at p. If D is
unitary, we denote by 1D the unit. For B a ring or a scheme, we denote by IdB the identity
morphism. For T an R-algebra and D an R-algebra, we denote by AT (reps. TA) the base
change A⊗R T (resp. T ⊗R A).

Moreover, for X a scheme over S and S ′ an S-scheme, XS′ (resp. S′X) stands for the base
change X ×S S ′ (resp. S ′×SX). In particular, for X a scheme over S and R′ an R-algebra, we
write XR′ (resp. R′X) instead of XSpec(R′) (resp. Spec(R′)X) for the base change X ×S Spec(R′)
(resp. Spec(R′) ×S X). Given two S-morphisms of schemes X → Y and Z → Y , we denote
pr1 : X ×Y Z → X the first projection of the fiber product X ×Y Z and pr2 : X ×Y Z → Z the
second.
For φ : X → Y a morphism of S-schemes, we denote by φ] : OY → OX the corresponding
morphism of sheaves of rings.
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Part A

Classical ramification theory
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Chapter I

Ramification theory for commutative rings
endowed with an action by a finite, abstract

group

Along this chapter, Γ denotes a finite abstract group and B a commutative ring. Denote
(B,Γ) an action of Γ on B. For G a finite abstract group, we denote

BG := {b ∈ B|g.b = b,∀ g ∈ G}

the ring of invariants by G and C := BΓ.
In this chapter, we give an overview of the classical ramification theory for Γ-objects which

is mainly the subject of the article of Barnard [Bar74]. Some results are taken from [Bou81,
Chapitre 5]. In chapter VII, the reader can see how this theory can pass naturally to an algebro-
geometric context, via the action of the constant group scheme.

1 Properties of Γ-objects and of the ring of the invariants
Definition I.1. 1. We denote (B,Γ) an action of Γ on B. We call such a B a Γ-object .

2. For Ω another finite abstract group, T an Ω-object and α : Ω→ Γ a morphism of groups,
a morphism f : B → T is a map such that f(α(ω).b) = ω.f(b), for all b ∈ B and ω ∈ Ω.
We often consider the particular case where Ω = Γ and f = IdΓ.

Remark I.2. 1. Any commutative ring B can be endowed with a trivial structure of Γ-object,
considering the trivial action defined by γ.b = b for any b ∈ B and any γ ∈ Γ.

2. (Quotient) Consider I an ideal of B stable under a subgroup Ω of Γ together with the
inclusion map i : Ω → Γ. Then, if p : B → B/I is the quotient map, Ω acts on the ring
B/I by ω.p(b) = p(ω.b), ω ∈ Ω and b ∈ B, the canonical quotient p : B → B/I is a
morphism between the Γ-object B and the Ω-object B/I. Moreover, this map is an initial
object in the category of such morphisms f : B → U for which I ⊆ Ker(f).
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3. (Localization) Consider L a multiplicatively closed subset of B, stable under a subgroup
Ω of Γ, then Ω acts on the ring of fractions L−1B by ω.(b/l) = (ω.b)/(ω.l) with ω ∈ Ω,
b ∈ B, l ∈ L and the canonical map f : B → L−1B is a morphism between the Γ-object
B and the Ω-object L−1B.

Proposition I.3. The functor of invariants is compatible with flat base change. That is to say,
if B is an R-algebra, for any flat morphism f : R→ R′,

(B ⊗R R′)Γ ' BΓ ⊗R R′

where Γ acts over B ⊗R R′ via B (trivially on R′).

Proof. Let E be the direct product of copies of B indexed by Γ. Define θ : B → E by

θ(b) = {γ.b− b}γ∈Γ (b ∈ B).

Then θ is a morphism of R-modules with kernel BΓ and

θ ⊗ IdR′ : B ⊗R R′ → E ⊗R R′

is a morphism of R-modules with kernel (B ⊗R R′)Γ. However, since f : R → R′ is flat, the
kernel of θ ⊗ IdR′ must also be BΓ ⊗R R′.

We start with some interesting properties of the ring of invariants of the action.

Proposition I.4. 1. The R-algebra B is integral over BΓ.
2. If B is an R-algebra of finite type then B is also a BΓ-module of finite type. Moreover, if

R is a noetherian ring, BΓ is an R-algebra of finite type.

Proof. 1. Let b ∈ B, we notice that b is a root of the unitary polynomial ∏γ∈Γ(X − γ.b).
Moreover, the symmetric functions on γ.b for γ ∈ Γ are in BΓ and this proves that b is
integral over BΓ.

2. Let (bi)1≥i≥m be a system of generators of the R-algebra B. Since in particular, B =
BΓ[b1, ..., bm] and the bj are integral over BΓ by 1., the result follows from Lemmas A.1
and A.2.

Proposition I.5. Given two prime ideals P, P′ of B over the same prime ideal p of C, there
is γ ∈ Γ such that P = γ.P′. In other words, Γ acts transitively on the set of prime ideals over
p.

Proof. If x ∈ P′, we have ∏γ∈Γ γ.x ∈ P′ ∩ C = p ⊂ P, thus there is γ ∈ Γ such that γ.x ∈ P,
that is x ∈ γ−1.P. We conclude that P′ ⊂ ∪γ∈Γγ.P, so as Γ is finite and the γ.P’s are prime,
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there is γ ∈ Γ such that P′ ⊂ γ.P (see [Bou81, Chapter II, §1, n°1, Proposition 2]); as P′

and γ.P are both over p, we have P′ = γ.P (see [Bou81, Chapter VI, §2, n°1, Corollary 1 of
Proposition 1]).

Remark I.6. For actions of finite locally free group schemes, all these properties are generalized
in terms of quotients (see Theorem III.39). In a more general context, we find weaker analogue
results under tame hypotheses, (see Theorem IX.6) but we could not prove transitivity, without
finiteness the condition on G.

2 Decomposition groups, inertia groups, and ramifica-
tion groups

This section recalls the most important properties of the inertia groups, decomposition
groups and ramification groups. We will dedicate Chapter V to the generalization and transla-
tion of the notion of inertia group and their properties in terms of actions of a group scheme.
In Chapter VII, we will explain why this notion is the "natural" generalization of the inertia
group. Unfortunately, we do not know any equivalent to decomposition group or ramification
group in an algebro-geometric context.

Definition I.7. Let P be a prime ideal of B.
1. We call group of decomposition at P, denoted by DΓ(P), the group defined by

DΓ(P) := {γ ∈ Γ|γ.P = P}.

We call group of decomposition of B, denoted by DΓ(B,Γ), the group generated by
the groups of decomposition at P for P running over all the prime ideals of B and we
call ring of decomposition denoted by BDΓ(P) the ring of the elements of B invariants
by DΓ(P).

2. For γ ∈ DΓ(P), denote by γ̄ the endomorphism of the ring B/P induced by the endo-
morphism of B given by z 7→ γ.z. We call group of inertia at P, denoted by Γ0(P),
the group defined by

Γ0(P) := {γ ∈ DΓ(P)|γ̄ = Id}

We call inertia group of B, denoted by Γ0(B,Γ), the group generated by the inertia
groups at P for P running over all the prime ideals of B and we call inertia ring,
denoted by BΓ0(P), the ring of the elements of B invariants by Γ0((P).

3. We call ramification group at P, denoted by Γ1(P), the group equal to the trivial group
if the characteristic is 0 and to the p-Sylow of Γ0(P). We call ramification group at B,
denoted by Γ1(B,Γ), the group generated by the ramification groups at P for P running
over all the prime ideals of B and we call ramification ring, denoted by BΓ1(P), the
ring of the elements of B invariants by Γ1(P).

11
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4. We call the orbit at P denoted by O(P) the set O(P) := {γ.P, for γ ∈ Γ}.

Remark I.8. 1. If B is local with maximal ideal P, then Γ0 := Γ0(B,Γ) = Γ0(P) and
Γ1 := Γ1(B,Γ) = Γ1(P)

2. For any P prime ideal of B, we have O(P) ' Γ/Γ0(P). Indeed, the kernel of the natural
map γ → O(P) sending γ to γ.P is Γ0(P).

For P prime ideal of B, it is clear that:

BΓ ⊂ BDΓ(P) ⊂ BΓ0(P) ⊂ BΓ1(P) ⊂ B

Corollary I.9. The decomposition and inertia group at prime ideals of B above the same prime
ideal of C are conjugated.

Proof. In fact, from Proposition I.5, two prime ideals of B above the same prime ideal of C are
conjugated and from the definitions, it is clear that for any γ ∈ Γ and P prime ideal of B, we
have:

DΓ(γ.P) = γDΓ(P)γ−1, Γ0(γ.P) = γΓ0(P)γ−1 and Γ1(γ.P) = γΓ1(P)γ−1

Proposition I.10. Let P be a prime ideal of B, p = P ∩ C. Then, k(P) is a quasi-Galois
extension of k(p), and the canonical homomorphism γ 7→ γ̄ of DΓ(P) in the group G of the k(p)-
automorphisms of k(P) defined by passing to the quotient, an isomorphism from DΓ(P)/Γ0(P)
to G.

Proof. To see that k(P) is a quasi-Galois extension of k(p) it is enough to prove that any
element b̄ ∈ k(P) is a root of a polynomial P of k(p)[X] such that its roots are in k(P). Let
b ∈ B be a representative of the class b̄. The polynomial Q(X) = ∏

γ∈Γ(X − γ.b) has all its
coefficients in C. Let P (X) be the polynomial of k(p)[X] whose coefficients are the images of
the ones of Q by the canonical homomorphism πp : C → k(p). As πp can be considered as the
restriction to C of the canonical homomorphism πP : B → k(P), we see that, in k(P)[X], P is
product of the linear factors X−πP(γ.b), and answers then to the question, since b̄ = πP(b). It
is clear that for all γ ∈ DΓ(P), γ̄ is a k(p)-automorphism of k(P). Without loss of generality,
we can replace B (resp. P) by BP (resp. PBP), hence we can suppose that P is maximal.
Then p is automatically also maximal and any element of k(p) is of the form πp(b) for some
b ∈ B. As any finite separable extension of k(p) admits a primitive element, we can show that
any finite separable extension of k(p) contained in k(P) has a degree at most Card(Γ), thus
the biggest separable extension k(P)s of k(p) contained in k(P) has degree at most Card(Γ).
Let y ∈ B a element such that πP(y) is a primitive element of k(P)s. The ideals γ.P for
γ ∈ Γ−DΓ(P) are maximal and different from P by definition; there is then b ∈ B such that
b ≡ y (mod P) and b ∈ γ−1P, for γ ∈ Γ−DΓ(P). Let now u be a k(p)-automorphism of k(P)

12



I.2 Decomposition groups, inertia groups, and ramification groups

and let P (X) = ∏
γ∈Γ(X − πP(γ.b)); as πP(b) is a root of P and P ∈ k(p)[X], u(πP(b)) is also

a root of P in k(P), hence there is τ ∈ Γ such that

u(πP(b)) = πP(τ.b)

But, we have u(πP(b)) 6= 0 and for γ ∈ Γ − DΓ(P), we have γ.b ∈ P, therefore πP(γ.b) = 0;
we conclude that we must have τ ∈ DΓ(P). But, since u and τ̄ have the same value for the
primitive element πP(y) = πP(b) of k(P)s, they coincide in k(P).

It is easily seen that the decomposition, inertia and ramification groups induce contravariant
functors from CΓ to the category of groups. In the following results, for G a finite group, ∆G

stands for any one of the symbols DG, G0 and G1. The proofs are immediate and left to the
reader.

Lemma I.11. Let Ω be a finite abstract group together with a morphism α : Ω → Γ, T a
Ω-object and f : B → T an equivariant morphism.

1. For every prime q of T , α(∆Ω (q)) ⊂ ∆Γ(f−1(q)) with equality for ∆G equal to G0, so
also G1.

2. We have α(∆Ω(T,Ω)) ⊆ ∆Γ(B,Γ)

We can obtain easily the following lemmas which show the behavior of these groups passing
to quotients, localizations and tensor products.

Lemma I.12. Let I be an ideal of B stable under the action of a subgroup Ω of Γ. Then for
all prime ideals P of B which contain I,

∆Ω(P) = ∆Γ(P) ∩ Ω

Lemma I.13. Let L be a multiplicatively closed subset of B stable under a subgroup Ω of Γ.
Then for all prime ideals P of B which do not meet L,

∆Ω(L−1P) = ∆Γ(P) ∩ Ω

As a direct consequence, we obtain:

Corollary I.14. For any prime ideal P of B and ∆ = DΓ, Γ0 or Γ1, we have

∆(BP, DΓ(P)) = ∆(P)

Lemma I.15. Let C → C ′ be a ring morphism and f : B → B ⊗C C ′ be the extension map
sending b ∈ B to b⊗ 1. For all prime ideals P of B ⊗C C ′,

∆Γ(P) = ∆Γ(f−1(P))

13
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The inertia and ramification groups have the following particular structures:

Theorem I.16. Suppose that B is a local ring with maximal ideal P and k := k(P). Write

Γ0 := Γ0(B,Γ) = Γ0(P), Γ1 := Γ1(B,Γ) = Γ1(P)

and suppose that Γ0 acts faithfully on B and leaves every ideal of B fixed. Then

1. The ramification group is equal to Γ1 = {γ ∈ Γ0|γ.b ≡ b (mod bP), b ∈ B}

2. The quotient Γ0/Γ1 is abelian and the number of generators is bounded above by the
number of generators of the monoid of principal ideals of B;

3. k contains all the nth roots of unity, where n runs over the set of orders of the elements
of Γ0/Γ1.

Proof. Let b be a non-zero element of B. Then the principal ideal generated by b is stable under
Γ0 and so, for γ ∈ Γ0, there exists [γ, b] ∈ B such that γ.b = b[γ, b]. [γ, b] is unique modulo P,
since if u is another element with the same property [γ, b]−u is a zero divisor mod B and hence
lies in P. Moreover [γ, b] is a unit in B. Again there exists v ∈ B such that b = (γ.b)v, and
then 1− [γ, b]v is a zero divisor and [γ, b]v must be a unit. Thus, if < γ, b > denotes the image
in k of [γ, b] under the quotient map B → k and if k∗ is the multiplicative group of non-zero
elements of k, γ 7→< γ, b > gives a well-defined function φb : Γ0 → k∗. Further, for γ, δ ∈ Γ0,

γ.(δ.b) = b[γ, b][δ, b] (mod P)

and therefore φb is a morphism of groups.
Let Ω = {γ ∈ Γ0|γ.b = b (mod bP), b ∈ B}. (Here B could be replaced by P since, if b is a
unit, we have γ(b) ≡ b (mod bP) for any γ ∈ Γ0). Then Ω is the intersection of the kernels
of the maps φb above and is therefore normal. Moreover, since Γ0 is finite, Ω must be the
intersection of finitely many such kernels and therefore Γ0/Ω is embedded in the direct product
of a finite number of copies of k∗. It follows that Γ0/Ω is abelian and moreover that, if k has
characteristic p 6= 0, the order of Γ0/Ω is prime to p.
We will prove that if k has characteristic zero, Ω is trivial, and if k has characteristic p 6= 0,
Ω is a p-group. It follows that Ω = Γ1 is trivial if k has characteristic zero and is equal to the
unique Sylow p-subgroup of Γ0(P) if k has characteristic p 6= 0.
Let then γ be an element of Ω and suppose that γr = 1 where the integer r is a unit in B. Let
b ∈ B. Then, since γ ∈ Ω, γ.b = b+ bx for some x ∈ P, and again

γ.(bx) ≡ bx (mod bxP).

Therefore
γ2(b) = γ.b+ γ.(bx) = b+ bx+ γ.(bx) ≡ b+ 2bx (mod bxP).

14
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Thus,
γ3(b) ≡ b+ bx+ 2γ(bx) ≡ b+ 3bx (mod bxP),

and by repeating this we have

b = γr(b) ≡ b+ rbx (mod bxP)

Therefore rbx ≡ 0 (mod bxP) and so bx ≡ 0 (mod bxP), since r is a unit. It follows that bx
annihilates a unit in B and is therefore zero. Thus, γ.b = b, for all b ∈ B and since Γ0 acts
faithfully on B, γ = 1.
It follows that when k has characteristic zero, Ω is trivial, and when k has characteristic p 6= 0,
Ω has no elements of order prime to p and is therefore a p-group. This completes the proof of
1.
Also now, Γ0/Γ1 is abelian. Moreover, if b1, ...., bm are elements of B with b = b1...bm 6= 0, then
clearly

< γ, b >=
m∏
i=1

< γ, bi >, for γ ∈ Γ0,

and so
∩mi=1ker(φbi) ⊆ ker(φb)

Hence the number of the cyclic components of Γ0/Γ1 is bounded above by the number of
generators of the monoid of principal ideals of B.
Finally, let n be the order of an element of Γ0/Γ1. We have a direct product of finitely many
copies of k∗ which contains a subgroup isomorphic with Γ0/Γ1. Therefore at least one of the
factors must contain a primitive nth root of unity.

Corollary I.17. Let P be a prime ideal of B. Suppose that Γ0(P) acts faithfully on BP and
leaves every ideal of BP fixed then

1. The ramification group is equal to Γ1(P) = {γ ∈ Γ0|γ.b ≡ b (mod bP), b ∈ BP};
2. the quotient Γ0(P)/Γ1(P) is abelian and the number of generators is bounded above by

the number of generators of the monoid of principal ideals of B;
3. k contains all the nth roots of unity, where n runs over the set of orders of Γ0(P)/Γ1(P).

Proof. It suffices to apply the above theorem to the DΓ(P)-object BP and Corollary I.14.

3 Galois and tame objects
We can now define the basic notions for ramification theory of Galois and tame objects.

Definition I.18. Let B be a Γ-object.
1. We call a prime ideal P of B ramified if the inertia group Γ0(P) is non trivial and

unramified if the inertia group Γ0(P) is trivial.

15
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2. B is called a Galois object if all the prime ideals of B are unramified.
3. We call a prime ideal P of B tame if the ramification group Γ1(P) is trivial.
4. B is called a tame object if all the prime ideals of B are tame.

Remark I.19. 1. For p a non-zero prime ideal of C, if the characteristic of its residue field
is zero, any non-zero prime ideal above this prime ideal is tamely ramified.

2. The analogues of a Galois object in algebro-geometric terms are the free actions studied
in Chapter VII, Section 3. Considering an action by a constant group scheme, we know
that saying that a prime ideal P of B is tamely ramified is equivalent to require the inertia
group scheme at this prime ideal to be linearly reductive (see Corollary VII.5). We will give
two notions of tameness generalizing the classical case, tame actions by an affine group
scheme defined in Chapter VI, Section 1 and tame quotient stacks defined in Chapter VI,
Section 2. We explain then why they are good candidates to generalize the tameness in
the actual context (Chapter VIII), how they are related (Chapter X, Section 2) and under
which hypotheses actions defining tame quotient stacks have linearly reductive inertias as
expected.

3. If D(B) is the product ∏γ∈Γ,γ 6=1 Iγ where Iγ is the ideal of B generated by the set {γ(b)−
b}b∈B, then the ramified prime ideals of B are precisely those which contain D(B), and
hence they form a closed subset in Spec(B).

Theorem I.20. (see [CHR65, Theorem 1.3]) B is a Galois object if and only if Γ acts faithfully
on B and B is a Galois extension of BΓ with Galois group Γ.

Both "Galois" and "tame" are local properties, in the sense of the next proposition.

Proposition I.21. The following assertions are equivalent:
1. B is a Galois (tame) object;
2. B ⊗C Cp is a Galois (tame) object, for all prime/maximal ideals p of C.
3. B ⊗C k(p) is a Galois (tame) object, for all prime/maximal ideals p of C.
4. (BP, DΓ(P)) is a Galois (tame) object, for all prime/maximal ideals P of B.
5. (k(P), DΓ(P)) is a Galois (tame) object, for all prime/maximal ideals P of B.

Proof. In the following, Γ stands for one of the symbols DΓ, Γ0 and Γ1.
The equivalence of 1. and 3. is a consequence of Lemma I.12. Indeed if C is a local ring with
maximal ideal p, then

∆(B/pB,Γ) = ∆(B,Γ)

The equivalence of 1. and 2. is a consequence of lemma I.15. Indeed for all prime ideals p of
C, ∆(B ⊗C Cp,Γ) is the subgroup of Γ generated by the subgroups ∆(P) where P runs over
the prime ideals of B lying above p.
The equivalences of 1., 4. and 5. is a consequence of lemma I.14.
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I.4 Maximal Galois objects and maximal tame objects inside a given object

Remark I.22. 1. As a consequence of Lemma I.15, we can prove that if B is a Galois
(tame) object then for any ring extension C → C ′, B⊗C C ′ is also Galois. Moreover, the
converse is true if for example C ′ is faithfully flat over C or if C ′ is integral over C.

2. We will see later that freeness is a local property (see Property IX.19), also we have some
localness results for tame actions (see Chapter VI, Section 1, 1.2) and for tame stacks
(see Lemma VI.15 and Corollary IX.22).

4 Maximal Galois objects and maximal tame objects in-
side a given object

Let Ω be a normal subgroup of Γ. Denote by i : BΩ → B the inclusion map and by
π : Γ → Γ/Ω the quotient map. Γ/Ω acts on BΩ, as follows. For any γ ∈ Γ, t ∈ BΩ put
π(γ).t := γ.t. This makes BΩ a Γ/Ω-object and i a morphism B → BΩ. Moreover, it is clear
that this map is universal among the maps f from any Σ-object where Σ is finite group endowed
with a morphism α : Γ→ Σ such that Ω ⊆ Ker(α) to the Γ-object B.

Lemma I.23. Let P be a prime ideal of B. Then for ∆ stands for one of the symbols DΓ, Γ0,
and Γ1,

∆(PΩ) = ∆(P)/(∆(P) ∩ Ω)

where PΩ := P ∩BΩ.

Proof. The result for ∆ = DΓ follows from the fact that Ω acts transitively on the set of the
prime ideals of B lying above the prime ideal PΩ of BΩ (see Proposition I.10, (i)). Now, let
p := P∩C. Then, the separable closure C of k(p) in k(P) is by Proposition I.10 a finite Galois
extension of k(p) and the action of ∆(P) on k(P) induces an exact sequence in the category
of groups:

1→ Γ0(P)→ DΓ(P)→ Gal(E/k(p))→ 1

Considering B as a Ω-object, we obtain:

1→ Γ0(P) ∩ Ω→ DΓ(P) ∩ Ω→ Gal(E.k(PΩ)/k(PΩ))→ 1

Considering BΩ as a Γ/Ω-object, we have the sequence:

1→ Γ0(PΩ)→ DΓ(PΩ)→ Gal(E ∩ k(PΩ)/k(p))→ 1

17
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and hence a commutative diagram

1

��

1

��
DΓ(P) ∩ Ω //

��

Gal(E/E ∩ k(PΩ)) //

��

1

1 // Γ0(P)

��

// DΓ(P) //

��

Gal(E/k(p)) //

��

1

1 // Γ0(PΩ) // DΓ(PΩ) //

��

Gal(E ∩ k(PΩ)/k(p)) //

��

1

1 1

with exact rows and columns. It follows, by diagram-chasing, that the map Γ0(P) → Γ0(PΩ)
is onto, which gives the result for ∆ = Γ0, Γ1.

From the previous lemma and the universality of the inclusion map i mentioned before, we
obtain the following theorem:

Theorem I.24. Write ∆ = Γ0(B,Γ) (respectively ∆ = Γ1(B,Γ)). Then (B∆,Γ/∆) is a Galois
(respectively tame) object; moreover, for any finite group Σ endowed with a map Γ → Σ and
any Galois (respectively tame) Σ-object U , there is a unique equivariant morphism f : U → B∆

such that the diagram
B∆ // B

U

OO

f

>>

is commutative.

We can localize this theorem in the following sense:

Corollary I.25. Let P be a prime ideal of B. Write ∆ = Γ0(P) (respectively ∆ = Γ1(P)) and
consider BP as a DΓ(P)-object. Then (B∆

P , DΓ(P)/∆) is a Galois (respectively tame) object;
moreover, for any finite group Σ endowed with a map DΓ(P)→ Σ and any Galois (respectively
tame) Σ-object U , there is a unique equivariant morphism f : U → B∆

P such that the diagram

B∆
P

// BP

U

OO

f

==

is commutative.
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I.5 Inertia group action inducing the initial action

Proof. It is a direct application to the previous theorem to the DΓ(P)-object and Corollary
I.14.
Remark I.26. As an analogue, we see how to get locally a free action from an action defining
a tame quotient stack (see Corollary IX.23).

5 Inertia group action inducing the initial action
One can describe the action Γ on B thanks to the action of Γ0(P) on BP, after an étale

base change. More precisely,
Theorem I.27. ( [Ray70, Chapitre X]) Let p be a prime ideal of C and P be a prime ideal
of B above p. denote by Cp

sh the strict henselization of C at the prime ideal p. Write
MapIG(P)(Γ, BP ⊗Cp Cp

sh) for the set of the applications u from Γ to BP ⊗Cp Cp
sh such that

u(i−1γ) = u(γ)i, for any γ ∈ Γ and i ∈ Γ0(P). Then, Γ operates on MapΓ0(P)(Γ, BP ⊗Cp Cp
sh)

via λu(γ) := λ.u(γ) = u(λ−1γ), for any λ and γ ∈ Γ. We obtain a canonical isomorphism φ,
compatible with the actions of Γ defined by

φ : B ⊗C Cp
sh → MapΓ0(P)(Γ, BP ⊗Cp Cp

sh)
b 7→ u : γ 7→ (γ−1b)P

Moreover, we have C ' B
Γ0(P)
P

Proof. We can easily see via the integral morphism Chs
p → B⊗CChs

p (base change of the integral
morphism C → B), that without loss of generality, it suffices to treat the case when C is a
local strictly Henselian ring with maximal ideal p.
We want to show that the following morphism, compatible with the actions of Γ

φ : B → MapΓ0(P)(Γ, BP)
b 7→ u : γ 7→ (γ−1b)P

is an isomorphism.
Fix γ1, ...., γs ∈ Γ representatives of the classes of the quotient Γ/Γ0(P) with γ1 = e (identity of
Γ). If we put Mj := γ−1

j P, then the maximal ideals M1, ..., Ms are exactly the prime ideals of
B over p. So, since B is integral over C which is Henselian, we have B ' ⊕sj=1BMj

. Moreover,
BMj

= γ−1
j BP (this is a consequence of [AM69, cor. 3.2 chap. 3] applied to the composite

B → B → BP of the multiplication by γj with the localization). Thus, BMj
' γ−1

j γiBMi
. As

a consequence, any b ∈ B can be written uniquely as (γ1
−1b1, γ2

−1b2, ..., γs
−1bs) in ⊕sj=1BMj

with bi ∈ BP. For any i,j, from the isomorphism BMj
' γ−1

j γiBMi
one obtains that (γ−1

j b)P =
γ−1
j γjbj = bj, and this allows to prove that φ is an isomorphism. Finally, the composite map

B 'φ MapΓ0(P)(Γ, BP) → BP

u 7→ u(1Γ)
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induces an isomorphism between C and BΓ0(P)
P .

Remark I.28. The possibility to rebuild the initial action from the action of the inertia group
motivates the notion of Slice (see Chapter III, Section 3, 3.3). As direct corollary, we obtain
Theorem VII.9, for actions of a constant group scheme. But, we obtain just a weaker result
for tame quotient stack (Theorem IX.20) and a slice theorem only when we suppose G to be
commutative and finite over S (Theorem IX.27).

6 Separability of the residue field of Γ-extension
Proposition I.29. Let P be a prime ideal of B, p := P∩C, D = BDΓ(P) and PDΓ(P) = P∩D.
Then, k(P) = k(PDΓ(P)).

Proof. Without loss of generality, we can suppose that P is maximal. It is enough to prove
that

(�) D = C + PDΓ(P)

We know that there are only a finite number of prime ideals of D above p that we denote
by {Mi}{0≤i≤r} putting M0 = PDΓ(P). Let x be a element of D; as the ideals {Mi}{0≤i≤r}
are maximal, there is y ∈ B such that y ≡ x mod M0 and y ∈ Mj, for any j ∈ {1, ..., r}
(see [Bou81, Chapitre II, §1, n ° 2, Proposition 5]). Let z := ∑

γ∈Γ γ.y. Clearly, z ∈ C and
to prove (�), it is enough to prove that γ.y ∈ P for any γ 6= e. Indeed, as a consequence,
z−y ∈ P∩D = PDΓ(P) and since x ≡ y (mod PDΓ(P)) then x ∈ A+PDΓ(P). Let then i ≥ 2 and
σ ∈ Γ be such that σ.y = yi; we will see that σ−1.P is not above PDΓ(P). In fact, if it was, there
would be τ ∈ DΓ(P) such that σ−1.P = τ.P (see Theorem I.10), but then (τ−1σ−1).P = P, in
other words τ−1σ−1 ∈ DΓ(P) and so also σ ∈ DΓ(P), but this contradicts the fact that y ∈ D
and σ.y 6= y. We conclude from this that σ−1.P is above one of the ideals Mj for j 6= 0 and
since y ∈Mj by construction, we have y ∈ σ−1.P or yi = σ.y ∈ P.

Proposition I.30. Let P be a prime ideal of B and p := P ∩ C. The residue field k(PIΓ(P))
at PIΓ(P) := P ∩ BIΓ(P) is equal to the biggest separable extension k(P)s of k(p) contained in
k(P).

Proof. Denote PDΓ(P) := P ∩ BDΓ(P). Without loss of generality, we can suppose that p is
a maximal ideal of C , then P, PDΓ(P) and PIΓ(P) are maximal in B, BDΓ(P) and BIΓ(P)

respectively. For any b ∈ B, the polynomial P (X) = ∏
γ∈IΓ(P)(X − γ.b) has its coefficients in

BIΓ(P), and by definition of IΓ(P), all its roots are congruent modulo P; the roots in k(P) of
the polynomial πP(P ) over k(PIΓ(P)) whose coefficients are the canonical images of the ones
of P by the homomorphism πP : B → k(P) are equal to the image of b by πP and this
shows that k(P) is an inseparable extension of k(PIΓ(P)), therefore k(P)s ⊂ k(PIΓ(P)). By
Theorem I.10, we know that k(P)s is a Galois extension of k(p) and that its Galois group is
isomorphic to G = DΓ(P)/IΓ(P). As k(PIΓ(P)) is an inseparable extension of k(P)s, k(PIΓ(P))
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I.7 Surjectivity of the trace map

is a quasi-Galois extension of k(p), and the separable factor of the degree of k(PIΓ(P)) over
k(p) is q = (DΓ(P) : IΓ(P)). Now, it is enough to see that k(PIΓ(P)) is a separable extension
of k(p). We can notice that G can be identified with the automorphism group of BIΓ(P) and
that BDΓ(P) is the ring of invariants of G. If b ∈ BIΓ(P), the polynomial Q(X) = ∏

g∈G(X − g.b)
has its coefficients in BDΓ(P), the polynomial over k(PDΓ(P)) whose coefficients are the images
of the ones of Q by πP is of degree q and πP(b) ∈ k(PIΓ(P)). As, by the previous proposition,
k(PDΓ(P)) = k(p), we can see that any element of k(PIΓ(P)) has degree at most q over k(p).
Let k1 be the subfield of invariants of the quasi-Galois extension k(PIΓ(P)) of k(p) by the group
of k(p)-automorphisms. Then we have [k(p) : k1] = q. Let u be a primitive element of k(PIΓ(P))
over k1; as it has degree q over k1 and degree at most q over k(p) and its minimal polynomial
over k1 has its coefficients in k(p), u is separable over k(p). On the other hand, for any v ∈ k1,
there is a power pf of the characteristic p of k(p) such that vpf ∈ k(p). We conclude that
k(p)(u− v), which contains (u− v)pf = up

f − vpf , contains upf and so k(p)(upf ). But, as u is
separable over k(p), we have k(p)(u) = k(p)(upf ). Since u is of degree q over k(p) and u − v
has degree at most q, it follows that k(p)(u) = k(p)(u− v), so v ∈ k(p)(u). This shows that v
is separable over k(p), therefore k1 = k(p) and k(PIΓ(P)) is separable over k(p).

Corollary I.31. If the order of the inertia IΓ(P) is prime to the characteristic p of k(p), the
field k(P) is a separable hence Galois extension of k(p).

Proof. Using the notation of the previous proposition, the polynomial πP(P ) has its coefficients
in k(p)IΓ(P) = k(P)s and all of its roots are equal to πP(P ); we deduce then that πP(P ) is a
power of the minimal polynomial of πP(b) over k(P)s; but the degree of this polynomial equals
the order of IΓ(P), and πP(b) ∈ k(P)s as a consequence of the hypothesis on the order of IΓ(P),
therefore k(P)s = k(P)

7 Surjectivity of the trace map

We can define a notion of trace map in the present case as the following morphism:

tr : B → C

b 7→ ∑
γ∈Γ γ.b

Theorem I.32. The Γ-object B is tame if and only if tr is onto.

Proof. Suppose tr is onto and let b be an element of B for which tr(b) = 1. Let P be any prime
ideal of B. Then, if {γ1, ..., γm} is a right transversal of DΓ(P) in Γ,

1 =
∑
γ∈Γ

γ.b =
∑
DΓ(P)

m∑
i=1

δγi.b =
∑

δ∈DΓ(P)
δ.x

21



Chapter I. Ramification theory for commutative rings endowed with an action
by a finite, abstract group

where x = ∑m
i=1 γi.b and so {δ1, ...., δn} is a left transversal of Γ0(P) in Dγ(P). We have:

1 =
∑

δ∈DΓ(P)
δ.x =

n∑
i=1

∑
γ∈Γ0(P)

δiγ.x ≡ |Γ0(P)|
n∑
i=1

δi(x) (mod P)

since δγ.x ≡ δ.x (mod P), for all γ ∈ Γ0(P) and δ ∈ DΓ(P). Therefore, |Γ0(P)| is not divisible
by the characteristic of k(P) and hence Γ1(P) = 1. Therefore, B is tame.
Conversely, suppose that B is tame. For each prime ideal p of C, the fixed subring (B⊗C Cp)Γ

is naturally isomorphic with Cp; so, to prove that tr is onto, we may assume that C is local.
Let P be a maximal ideal of B. Then DΓ(P)/Γ0(P) acts faithfully on the field k(P) and
therefore, if {δ1, ..., δn} is a left transversal of Γ0(P) in DΓ(P), there is an element b of B such
that ∑n

i=1 δi.b ≡ 1 (mod P), and hence

∑
δ∈DΓ(P)

δ.b ≡ |Γ0(P)|
n∑
i=1

δi.b ≡ |Γ0(P)| 6≡ 0 (mod P)

Now, since the distinct conjugates of P are pairwise coprime, there exists a ∈ B such that

a ≡ b (mod P) and γ.a ≡ 0 (mod P) where γ 6∈ DΓ(P)

and then ∑
γ∈Γ

γ.a ≡
∑

δ∈DΓ(P)
δ.b (mod P)

Therefore tr(a) lies outside P and hence outside all the conjugates of P. But, if C is local,
all the maximal ideals of B are conjugate to each other. Therefore tr(a) is a unit and tr is
onto.

Remark I.33. We have the natural generalization of this result for tame actions by a constant
group scheme (see Lemma VII.7). In a more general context, we obtain a Reynold operator
which plays the role of the trace map (see Chapter VIII, Section 1, §1.1).
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Classical ramification in number theory

In this chapter, we present some classical results of ramification theory for Dedekind exten-
sions that one can find for example in the book of Cassels and Fröhlich [Cas67, Chapter I, §5]
as a specialization of what we discussed in the previous chapter.

First, we recall the classical context for number theory ramification. Thoughout this chapter,
C is a Dedekind domain, K is its quotient field, L is a finite Galois extension field of K and
B is the integral closure of C in L. We denote Γ the Galois group (i.e. the finite group of
the K-embeddings of L into an algebraic closure K of K). For any γ ∈ Γ and b ∈ B, one can
prove that γ.b ∈ B. This gives B a structure of Γ-object.

For p a non-zero prime ideal of C (which is then a maximal ideal) and P a prime ideal of
the integral closure B of C in L above p i.e. P ∩ C = p, we write χP for the characteristic of
k(P).

Definition II.1. 1. We call the order of the inertia group at P, denoted by e(P|p), the
ramification index. As a consequence of Corollary I.9, e(P|p) depends only on p, so
we will denote it by ep.

2. We define the trace map trBP/Cp : BP → Cp to be the map which sends b ∈ BP

to the trace of the linear transformation x 7→ xb which is equivalent to sending b to∑
γ∈DΓ(P) γ.b ∈ Cp. (This corresponds to the trace map introduced in the previous chapter

for the DΓ(P)-object BP.)

Remark II.2. Ramification in algebraic number theory means prime numbers factoring into
some repeated prime ideal factors as follows. Indeed, by [Cas67, Chapter I, §8, Theorem 1], we
know that for p a prime ideal of C,

pB = (P1...Pn)ep

where Pi are distinct prime ideals of B called the prime ideals over p and ep is equals to the
index of ramification defined above. Considering number fields, ramification theory permits to
understand with what complexity the arithmetic of Q pass to the arithmetic of the number field
K.
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Chapter II. Classical ramification in number theory

Corollary I.17 has as direct consequence the following theorem:

Theorem II.3. ([Cas67, Chapter I, §8, Theorem 1]) Let p be a non-zero prime ideal of C and
let P be a non-zero prime ideal of B above p. If χP = 0, the inertia group Γ0(P) is cyclic and
if χP = p 6= 0 then Γ0(P) is the extension of a p-group by a cyclic group.

Proof. In fact, in the present context, it is well known that Γ0(P) acts faithfully on BP and
leaves every ideal of BP fixed. Indeed, for any b ∈ B and γ ∈ Γ, either γ.b ∈ bB or b ∈ (γ.b)B
and in either case γ.(bB) = bB since γ has finite order. Hence Γ stabilizes all principal ideals
and therefore all ideals of B. This permits to apply Corollary I.17.

In this context, there is also the concept of tame and unramified prime ideals/extensions
that we recall in the following definition.

Definition II.4. Let p be a non-zero prime ideal of C.
1. A non-zero prime ideal P of B above p is said to be unramified over K if ep = 1 and

k(P) is separable over k(p). The non-zero prime ideal p of C is unramified (in L) if
all (or equivalently one) prime ideals P above p in B are unramified over K. We will say
that the extension L|K is unramified if it is unramified at any non-zero prime ideal of
C.

2. A non-zero prime ideal P of B above p is said to be tamely ramified over K if χP 6 |ep
and k(P) is separable over k(p). The non-zero prime ideal p of C is tamely ramified
(in L) if all prime ideals P above p in B are tamely ramified over K. We will say that
the extension L|K is tamely ramified if it is tamely ramified at any non-zero prime
ideal of C.

This definition is a particular case of the one of the previous chapter, according to the
Corollary I.31. As a consequence of the Theorem I.32 of the previous chapter:

Theorem II.5. The following conditions are equivalent:
1. L is tamely ramified over K;
2. trL/K(B) = C.

Using Theorem I.21 and Corollary I.14, one obtains the following consequence of the previous
Theorem.

Corollary II.6. Let p be a prime ideal of C. The following conditions are equivalent:
1. L is tamely ramified over K at the prime p;
2. trLP/Kp(Bp) = Cp.

By Theorem I.24, we can deduce the following fact.

Proposition II.7. Every finite extension of the field K has a maximal unramified extension
which is the fixed field of the inertia group and a maximal tame extension which is the fixed
field of the ramification group.
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Actions of affine group schemes and
associated quotient stacks

25





Chapter III

Actions of affine group schemes

1 Affine group schemes

This section recalls the three equivalent ways to define an affine group scheme (representable
group functor, Hopf algebra, functor of points). We shall omit the proofs referring to [Wat79,
Chapter 1] instead.

1.1 As a representable group functor

Theorem III.1 (Definition). Let F be a functor from the category of R-algebras to the category
of sets. For any T R-algebra, the elements in F (T ) are the solutions in T of some family of
equations over R if and only if there are an R-algebra A and a bijective correspondence between
F (T ) and HomR(A, T ). Such a functor F is called representable. We say also that A
represents F .

Definition III.2. An affine group scheme over R is a representable functor from the cate-
gory of commutative R-algebras to the category of groups.

1.2 As a Hopf algebra

A group scheme G over S can be characterized as a functor endowed with three natural
transformations:

– a multiplication map m : G×S G→ G,
– an unit map u : S → G,
– an inverse map i : G→ G
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Chapter III. Actions of affine group schemes

satisfying associativity, left and right unit and left and right inverse properties. In other words,
the following diagrams commute:

G×S G×S G
m×IdG

��

IdG×m// G×S G
m
��

G×S G m
// G

S ×S G
u×IdG// G×S G

m
��

G G

G

��

(i,IdG)// G×S G
m
��

S // G

(Associativity) (Left unit) (Left inverse)

Given a representable functor G over S represented by an R-algebra A, the Yoneda lemma im-
plies that the data of a group scheme G is equivalent to the data of three R-algebra morphisms:

– a comultiplication map ∆ : A→ A⊗R A,
– a counit map ε : A→ R,
– a coinverse (antipode) map S : A→ A

satisfying coassociativity, left and right counity and left and right antipode properties. In other
words, the following diagrams commute:

A⊗R A⊗R A A⊗R A
IdA⊗∆oo

A⊗R A

∆⊗IdA

OO

A∆
oo

∆

OO R⊗R A A⊗R A
ε⊗IdAoo

A A

∆

OO A A⊗R A
m◦(S,IdA)oo

R

OO

Aε
oo

∆

OO

(Coassociativity) (Left counit) (Left antipode)

where m : A⊗R A→ A is the algebra multiplication for A.

Remark III.3. We will use in further proofs the useful notation sigma well-established in
the Hopf algebra literature. Specifically, for any a ∈ A, we write ∆(a) = ∑

(a) a1 ⊗ a2. This
presentation itself is purely symbolic; the terms a1 and a2 do not stand for particular elements
of A. The comultiplication ∆ takes values in A⊗R A, and so we know that:

∆(a) = (a1,1 ⊗ a1,2) + (a2,1 ⊗ a2,2) + (a3,1 ⊗ a3,2) + ...+ (an,1 ⊗ an,2)

for some elements ai,j of A and some integer n. The Sigma notation is just a way to separate
the ai,1 from the aj,2. In other words, one can say that the notation a1 stands for the generic
ai,1 and the notation a2 stands for the generic aj,2. According to this notation, we can rewrite
for any a ∈ A,

1. the coassociativity diagram as ∑(a)(a1)1 ⊗ (a1)2 ⊗ a2 = ∑
(a) a1 ⊗ (a2)1 ⊗ (a2)2,

2. the counit one as ∑(a) ε(a1)a2 = ∑
(a) a1ε(a2) = a,

3. the antipode one as ∑(a) S(a1)a2 = ∑
(a) a1S(a2) = ε(a)1A.

Definition III.4. We keep the previous notations.
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III.2 Comodules

1. An R-algebra A endowed with the two R-algebra morphisms ∆ and ε making the previous
coassociativity and the counit diagrams commute is called a coalgebra. We denote such
an R-algebra (A,∆, ε) or simply A if there is no possible confusion.

2. An R-algebra A endowed with three R-algebra morphisms ∆, ε and S making the previous
coassociativity, counit and antipode diagrams commute is called an Hopf algebra. We
denote such an R-algebra (A,∆, ε, S) or simply A if there is no possible confusion.

Theorem III.5. The category of the affine group schemes over S is anti-equivalent to the one
of the commutative Hopf algebras over R.

Remark III.6. The antipode of a commutative algebra is involutive.

1.3 As functor of points

Definition III.7. Let T be a S-scheme and Z be a scheme over S. We denote by Z(T ) the set
of the T -points of Z, that is, the set Z(T ) := HomS-Sch(T, Z). The arrow T 7→ Z(T ) defines
a contravariant functor called the functor of points of Z from the category of S-Schemes to
the category of sets. In particular, for B an R-algebra, we write Z(B) instead of Z(Spec(B)).
If moreover Z := Spec(D) is an affine scheme, then Z(B) = HomR-Alg(D,B) and the arrow
B 7→ Z(B) defines a covariant functor from the category of R-Algebras to the category of sets.

By Yoneda lemma, the data of a scheme is equivalent to the data of its functor of points.
In particular, a group functor G represented by the Hopf algebra A is the functor of points of
the affine scheme Spec(A), we write G = Spec(A).

2 Comodules

In order to give the algebraic definition of an action by an affine group scheme, we need to
define what a comodule is. The reader finds in this section the vocabulary around this notion
and the properties that we will use later in the proofs. For more details or for the reader
interested in the non-commutative case, he can refer to [BW03, Part 1]. Henceforth, A is a
Hopf algebra (A,∆, ε, S) over R (as above).

2.1 Definitions and examples

Definition III.8. 1. A right comodule consists in a pair (M,ρM) where M is an R-
module and ρM : M → M ⊗R A is the structural morphism for the comodule, that is a
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Chapter III. Actions of affine group schemes

R-linear morphism making the following diagrams commute:

M
ρM //

ρM

��

M ⊗R A
IdM⊗∆
��

M ⊗R AρM⊗IdA
//M ⊗R A⊗R A

M

ρM

��

M ⊗R R

M ⊗R A
IdM⊗ε

88
.

2. We have also the Sigma notation as the one for Hopf algebras (Remark III.3). More
precisely, for any m ∈M , we write ρM(m) = ∑

m(0) ⊗m(1). Following this notation, the
previous diagrams become∑

(m(0))(0) ⊗ (m(0))(1) ⊗m(1) =
∑

m(0) ⊗ (m(1))1 ⊗ (m(1))2

and ∑
ε(m(1))m(0) = m.

3. We denote by MA (resp. AM) the category of the right (resp. left) A-comodules.

Definition III.9. We say that (B, ρB) is an A-comodule algebra if B is unitary and its
stucture of right A-comodule is compatible with its algebraic structure (That is, ρB(1B) = 1B⊗1A
and ρB(ab) = ρB(a)ρB(b) = ∑

a(0)b(0) ⊗ a(1)b(1), for any a, b ∈ B).

Example III.10. A coalgebra A is an A-comodule via its comultiplication map ∆ : A→ A⊗RA.

Remark III.11. We define similarly the notion of left comodule with a structure morphism
Mρ : M → A⊗RM . We write Mρ(m) = ∑

m(−1) ⊗m(0), for all m ∈M , in sigma notation.

Given a R-module M , the following lemma defines on it a structure of right comodule from
a structure of left comodule and conversely.

Lemma III.12. Let M be an R-module. If M is a left A-comodule via the morphism Mρ :
M → A ⊗R M defined by m 7→ ∑

m(−1) ⊗ m(0), then M is also a right A-comodule via the
morphism ρM : M → M ⊗R A defined by m 7→ ∑

m(0) ⊗ S(m(−1)). Similarly, if M is a right
A-comodule via the morphism ρM : M →M ⊗R A defined by m 7→ ∑

m(0) ⊗m(1), it becomes a
left A-comodule via the morphism Mρ : M → A⊗RM defined by m 7→ ∑

S(m(1))⊗m(0).

Proof. By [DNR01, Proposition 4.2.6]), the antipode of an Hopf algebra is an antimorphism.
That is, for any a ∈ A, ∆(S(a)) = ∑

S(a2) ⊗ S(a1) (]) and ε(S(a)) = ε(a) (�). Let M be a
left A-comodule. For any m ∈M ,

(IdM ⊗ ε) ◦ ρM(m) = (IdM ⊗ ε)(
∑
m(0) ⊗ S(m(−1)))

= ∑
m(0) ⊗ ε(S(m(−1)))

= ∑
m(0) ⊗ ε(m(−1))

= m⊗ 1, (by (�)).
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III.2 Comodules

Moreover,

(IdM ⊗∆) ◦ ρM(m) = (IdM ⊗∆)(∑m(0) ⊗ S(m(−1)))
= ∑

m(0) ⊗ S((m(−1))2)⊗ S((m(−1))1) (By (]))
= (IdM ⊗ S ⊗ S) ◦ T ◦ (∆⊗ IdM) ◦ Mρ(m) (with T (a⊗ b⊗ c) = c⊗ a⊗ b)
= (IdM ⊗ S ⊗ S) ◦ T ◦ (A⊗ Mρ) ◦ Mρ(m) (since M is a left comodule)
= ∑(m(0))(0) ⊗ S((m(0))(−1))⊗ S(m(−1))
= (ρM ⊗ A) ◦ ρM(m).

Whence M is a right A-comodule. Using the same arguments, we can establish the rest of the
proof.

2.2 A-comodule morphisms

Definition III.13. 1. Let (M,ρM) and (N, ρN) be two right A-comodules. An R-linear map
g : M → N is called A-comodule morphism if ρN ◦ g = (g ⊗ IdA) ◦ ρM .

2. Denote by ComA(M,N) the R-module of the A-comodule morphisms from M to N . By
the definition, we infer that ComA(M,N) is characterized by the exact sequence of MR:

0 // ComA(M,N) // HomR(M,N) γ // HomR(M,N ⊗R A)

where γ is defined by γ(f) := ρN ◦ f − (f ⊗ IdA) ◦ ρM , for any f ∈ HomR(M,N).

Proposition III.14. Let g : M → N be an A-comodule morphism.

1. The image of g is an A-subcomodule of N

2. The kernel of g is an A-subcomodule of M .

3. The composite of two A-comodule morphisms is an A-comodule morphism.

Lemma III.15. Let A be a flat R-coalgebra and M ∈MA. Then,

1. The functor ComA(−,M) : MA →MR is left exact.

2. The functor ComA(M,−) : MA →MR is right exact.

Proof. Given an exact sequence X → Y → Z → 0 in MA, we obtain the following commutative
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diagram:

0

��

0

��

0

��
0 // ComA(Z,M) //

��

ComA(Y,M) //

��

ComA(X,M)

��
0 // HomR(Z,M) //

��

HomR(Y,M) //

��

HomR(X,M)

��
0 // HomR(Z,M ⊗R A) // HomR(Y,M ⊗R A) // HomR(X,M ⊗R A)

where the vertical arrows are exact by the definition of ComA. Moreover, the exactness of the
functor HomR induces the exactness of the second and the third rows. Thanks to the flatness
of A over R, we obtain the exactness for the third one. By the snake lemma, the first row is
also exact. Using the same arguments, we prove the second part of the lemma.

2.3 Duality
Given M an R-module, we denote by M∗ := HomR(M,R) its dual. In order to endow a

natural comodule structure on the dual of a comodule, we will need these two following lemmas:

Lemma III.16. Let M be an R-module of finite presentation and let A be a flat module over
R. The map vM : A⊗RM∗ → HomR(M,A) defined by a⊗ h 7→ h(−)a is an isomorphism.

Proof. The result is clear for M = R and M = Rk where k ∈ N. Consider some exact sequence

Rk → Rn →M → 0,

where k and n ∈ N. Applying the functor A ⊗R HomR(−, R) and HomR(−, A) to this exact
sequence and using the flatness of A over R, we obtain the following commutative diagram:

0 // A⊗R HomR(M,R) //

vM

��

A⊗R HomR(Rn, R) //

vRn

��

A⊗R HomR(Rk, R)
v
Sk

��
0 // HomR(M,A) // HomR(Rn, A) // HomR(Rk, A)

The result follows since vRk et vRn are isomorphisms.

Lemma III.17. Let N be an R-module. For any M ∈MA, the R-linear map

φN : ComA(M,N ⊗R A) → HomR(M,N)
f 7→ (IdN ⊗ ε) ◦ f
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III.2 Comodules

is bijective and its inverse ψN is defined by h 7→ (h⊗ IdA) ◦ ρM .

Proof. For f ∈ ComA(M,N ⊗R A), the following diagram commutes:

M

ρM

��

f // N ⊗R A
IdN⊗∆

��
M ⊗R A f⊗IdA

// N ⊗R A⊗R A IdN⊗ε⊗IdA
// N ⊗R A

In other words, f = (IdN ⊗ ε ⊗ IdA) ◦ (f ⊗ IdA) ◦ ρM = (φN(f) ⊗ IdA) ◦ ρM . From this, we
can deduce the injectivity of φN . Moreover, since ρM is an A-comodule map, (h ⊗ IdA) ◦ ρM
also, for any h ∈ HomR(M,N). Thus, φN((h ⊗ IdA) ◦ ρM) = (IdN ⊗ ε) ◦ (h ⊗ IdA) ◦ ρM =
h ◦ (IdM ⊗ ε) ◦ ρM = h hence φ is surjective.

Lemma III.18. Let A be a flat R-coalgebra and M be a right A-comodule finitely presented
as an R-module. Then the dual M∗ can be endowed with a structure of left A-comodule via the
morphism M∗ρ : M∗ → HomR(M,A) ' A⊗RM∗ defined by g 7→ (g ⊗ IdA) ◦ ρM .

Proof. The following commutative diagram insures that ρM∗ endows M∗ with a structure of
comodule:

M∗

ρM∗

%%

'ψR

��

ρM∗ // HomR(M,A) ' A⊗M∗

'ψA
��

IdA⊗ρM∗

vv

ComA(M,A)
∆◦−

��

∆◦− // ComA(M,A⊗R A)
(IdA⊗∆)◦−

��
ComA(M,A⊗R A)

' φA
��

(∆⊗IdA)◦− // ComA(M,A⊗R A⊗R A⊗R A)
'φA⊗RA
��

HomR(M,A) ' A⊗RM∗
∆⊗IdM∗

// HomR(M,A⊗R A) ' A⊗R A⊗RM∗

The isomorphisms in the diagram were defined in the two previous lemmas. In this diagram,
the Hopf algebra A (resp. A⊗RA, A⊗RA⊗RA) is seen as A-comodule via ∆ (resp. IdA⊗∆,
IdA ⊗ IdA ⊗ ∆). The commutativity of the middle square follows from the coassociativity
on A. The commutativity of the top square follows from the A-comodule property for M ,
(IdM ⊗∆)◦ρM = (ρM ⊗ IdA)◦ρM . The commutativity of the bottom square is obvious. Thus,
to conclude, it is enough to prove that ρM∗ = φA◦∆◦ψR and IdA⊗ρM∗ = φA⊗A◦(IdA⊗∆)◦ψA.
Indeed, for any g ∈M∗ and a ∈ A, we have:

φA ◦∆ ◦ ψR(g) = (IdA ⊗ ε) ◦∆ ◦ (g ⊗ IdA) ◦ ρM = (g ⊗ IdA) ◦ ρM = ρM∗(g)
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Chapter III. Actions of affine group schemes

and

φA⊗A◦(IdA⊗∆)◦ψA(a⊗g) = (IdA⊗IdA⊗ε)◦(IdA⊗∆)◦(g(−)a⊗IdA)◦ρM = IdA⊗ρM∗(a⊗g).

2.4 (B,A)-modules and modules of invariants
In this section, B is a right A-comodule algebra.

Definition III.19. 1. We denote by BM
A the category of (B,A)-modules. An object of

BM
A is R-module N with a structure of left B-module and right A-comodule such that

the A-comodule structural morphism ρB is B-linear, (that is, ρN(bn) = ρB(b)ρN(n) =∑
b(0)n(0) ⊗ b(1)n(1), for any n ∈ N and any b ∈ B). A morphism of BMA is a morphism

which is simultaneously a B-linear map and A-comodule morphism. For any M and any
N in BM

A, we write BBim
A(M,N) for the set of these morphisms from M to N .

2. Let M be a (B,A)-module. The module of invariants of M , denoted by (M)A, is
defined by the following exact sequence:

0→ (M)A → M //
ρM

M⊗1
//M ⊗R A

This defines a functor (−)A : BM
A → CM (which is left exact by definition) called the

functor of invariants for the action (X,G).

Lemma III.20. For any M ∈ BM
A, there is an R-isomorphism µM : BBimA(B,M) → MA

which maps f to f(1B). Its inverse map ωM sends m to the map b 7→ b.m.

Proof. For any f ∈ BBim
A(B,M) and any b ∈ B, ωM(µM(f))(b) = bf(1B) = f(b) since f is

B-linear. Conversely, for any m ∈M , µM(ωM(m)) = 1B.m = m.

Lemma III.21. Setting C := BA and AC := C ⊗R A, we have BM
A = BM

AC .

Proof. The coalgebra structure of AC is given by IdC ⊗∆. For some M ∈ BM
A, the structural

morphism ρM : M → M ⊗C AC ' M ⊗R A given M a comodule structure is B-linear by
definition, so in particular, C-linear endowing a AC-comodule structure on M . The converse is
clear.

We can prove readily the following lemmas:

Lemma III.22. For any left A-comodule M , B ⊗R M ∈ BM
A. More precisely, B ⊗R M is a

left B-module via multiplication on the first factor and a right A-comodule via the morphism
ρB⊗RM := B ⊗RM → (B ⊗RM)⊗R A defined by b⊗m 7→ ∑

b(0) ⊗m(0) ⊗ b(1)S(m(−1)).
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Lemma III.23. The following map is an R-module isomorphism:

ψ : ComA(A,B) → BBim
A(B ⊗R A,B)

φ 7→ ψ(φ) = [b⊗ a 7→ ∑
b(0)φ(S(b(1))a)]

Its inverse map sends F ∈ BBim
A(B ⊗R A,B) to [a 7→ F (1B ⊗ a)] ∈ ComA(A,B).

Lemma III.24. Suppose that the Hopf algebra A is flat over R. Let B ∈MA and M ∈ RM be
finitely presented as R-modules. There is a natural (functorial on M) isomorphism:

(B ⊗RM∗)A ' ComA(M,B)

Proof. The commutativity of the right square of the diagram below insures the existence of λ
which is an isomorphism and so α and γ as well.

0 // (B ⊗RM∗)A

λ
��

// B ⊗RM∗

α

��

φ // (B ⊗RM∗)⊗R A
γ

��
0 // ComA(M,B) // HomR(M,B)

ψ
// HomR(M,B ⊗R A)

where φ := ρB⊗RM∗−IdB⊗IdM∗⊗1, ψ := (ρB ◦−)−ρM∗ and for any b⊗f⊗a ∈ B⊗RM∗⊗RA
and m ∈M , γ(b⊗ f ⊗ a)(m) = ∑

b.f(m(0))⊗ a.m(−1)

Indeed, the map γ is an isomorphism as composite of the isomorphism γ1 : B ⊗RM∗ ⊗R A→
B⊗RA⊗RM∗ defined for any b⊗f⊗a ∈ B⊗RM∗⊗RA by γ1(b⊗f⊗a) = b⊗a.m(−1)⊗f(m(0))
(Its inverse map is defined for any b⊗a⊗f ∈ B⊗RA⊗RM∗ by γ−1

1 (b⊗a⊗f) = ∑
b⊗f(m(0))⊗

a.S(m(−1))) with the canonical isomorphism γ2 : B ⊗R A ⊗R M∗ → HomR(M,B ⊗R A). For
any b⊗ f ∈ B ⊗RM∗, we have

ψ ◦ α(b⊗ f) = ψ([m 7→ bf(m)]) = [m 7→ ρB(b)f(m)−∑ bf(m(0))⊗m(−1)]

and

γ ◦ φ(b⊗ f) = γ([m 7→ ∑
b(0) ⊗ f(m(0))⊗ b(1)S(m(−1))− b⊗ f(m)⊗ 1])

= [m 7→ (b(0) ⊗ b(1)S(m(1))(m(0))(−1))f((m(0))(0) −
∑
bf(m(0) ⊗m(−1)]

= [m 7→ ∑(b(0) ⊗ b(1)ε(m(−1)))f(m(0))−
∑
bf(m(0))⊗m(−1)]

= [m 7→ ρB(b)f(m)−∑ bf(m(0))⊗m(−1)].

2.5 Comodules and linear representations

The reader can refer to [Wat79, Chapter 3] for this section.
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Definition III.25. Let G be a R-group functor and M be a R-module. Consider the functor
X which maps any R-algebra T to X(T ) = M ⊗R T and let GLM denote the R-group functor
which sends an R-algebra T to GLM(T ) = AutT (M⊗RT ). A linear representation of G on
M is the data (funtorial on T ) of a T -linear action of G(T ) on X(T ), for any R-algebra T . In
other words, a linear representation of G on M is characterized by the data of a homomorphism
δ : G → GLM . We denote such representation by (M, δ) or simply M if there is no confusion
possible.

Definition III.26. Let (M, δ) be a linear representation of G.

1. A submodule N of M is said G-invariant if δ(T )(g)(N ⊗ T ) = N ⊗ T , for any R-
algebra T and any g ∈ G(T ). In this case, (N, δ|N) is a linear representation called
subrepresentation of (M, δ).

2. A representation with no non trivial subrepresentations is called an irreducible repre-
sentation.

3. Let (N, φ) be another representation of G. The direct sum of (M, δ) and (N, φ) is
a representation defined by the action g.(n,m) = (g.n, g.m), for any R-algebra T , any
g ∈ G(T ) and any m,n ∈M ⊗R T .

4. A representation which is the direct sum of irreducible representations is called a semisim-
ple representation.

Theorem III.27. Let G be an affine group scheme over R represented by the Hopf algebra
A. The data of a linear representation of G on M is equivalent to the data of an A-comodule
structure on M .

Proof. Let (M, δ) be a representation. From IdA ∈ G(A), we obtain anA-linear map δ(A)(IdA) :
M ⊗R A→ M ⊗R A. Take as ρM its restriction to M ' M ⊗R R. By Yoneda lemma, for any
g : A→ T in G(T ) where T is an R-algebra, the following diagram is commutative:

M ⊗R A
δ(A)(IdA) //

IdM⊗g
��

M ⊗R A
IdM⊗g
��

M ⊗R T δ(T )(g)
//M ⊗R T

Taking in this diagram, g equal to ε (resp. ∆) using Hopf algebra counity (resp. coassociativity)
property for A, we prove that ρM gives M a structure of comodule.
Now, let M be an A-comodule with structural map ρM : M →M ⊗R A. We define naturally a
map

δ(T ) : G(T ) → EndT (M ⊗R T )
g 7→ (IdM ⊗ g) ◦ ρM ⊗ IdT
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III.2 Comodules

To insure that δ is a representation, it is enough to show that for any R-algebra T and g, h ∈
G(T ),

δ(T )(g) ◦ δ(T )(h) = δ(T )(gh)

Since gh is given by ∆ ◦ (g, h),

δ(T )(gh) = (IdM ⊗∆ ◦ (g, h)) ◦ ρM ⊗ IdT

and
δ(T )(g) ◦ δ(T )(h) = (IdM ⊗ g) ◦ ρM ⊗ IdT ) ◦ ((IdM ⊗ h) ◦ ρM ⊗ IdT )

Finally, the result follows from the equality (IdM ⊗∆) ◦ ρM = (ρM ⊗ IdA) ◦ ρM satisfied by the
A-comodule M .

Example III.28. An important example is obtained by taking M = A and ρM = ∆. The
corresponding representation is called the regular representation of G.

Direct sums and tensor products of linear representations are also linear representations so
the corresponding constructions are comodules.

Definition III.29. Let M be an A-comodule.

1. An R-submodule N of M is a subcomodule if ρM(N) ⊆ N ⊗R A.
2. If N is a subcomodule of M , the composite M →M ⊗A→

(
M/N

)
⊗RA factors through

M/N , and then M/N becomes a comodule called the quotient comodule.
3. A comodule with no non trivial subcomodules is called simple (The corresponding repre-

sentation is irreducible).
4. A comodule which is the direct sum of simple comodules is called semisimple.
5. A coalgebra A such that any right A-comodule is semisimple is called cosemisimple.

Lemma III.30. Let M be an R-module, let G = Spec(A) be an affine group scheme over R
and let (M, δ) be a linear representation of G on M . Then (M, δ) is semisimple if and only
if for any G-invariant R-submodule N of M , there is a G-invariant R-submodule of M which
is a complement of N in M . Or, in other words, by Theorem III.27, an A-comodule M is
semisimple if and only if any A-subcomodule of M is a direct factor of M as A-comodule.

We end this section with Maschke theorem (see [Spr89, II, 1.2]) which will be useful for the
following, but first we will establish a lemma needed in the proof:

Lemma III.31. Let (M, δ) be a representation of a group G of finite order over a field K of
characteristic zero or prime to the order of G. If N is a stable vector subspace of some repre-
sentation (M, δ), then there is a complement subspace of N in M stable for this representation.
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Proof. Denote by Nq some complement of N and by p the projector over N along Nq. Then,
consider the linear map ps : M → N defined by ps = 1

g

∑
t∈G δ(t)◦p◦δ(t−1) where g denotes the

order of the group G. We will show that ps is a projector. The restriction of ps to N is equal
to the identity, since the restriction of p to N is equal to the identity and N is stable under
ρ(t). Moreover, the image of ps is equal to N . Now we will prove that, if Ns is the kernel of ps,
then it is stable by the representation. We first notice that if u is an element of the group, the
endomorphism of G, which maps t to ut is a permutation. We have

ps = 1
g

∑
t∈G δ(u) ◦ δ(t) ◦ p ◦ δ(t−1) ◦ δ(u−1)

= δ(u) ◦
(

1
g

∑
t∈G δ(t) ◦ p ◦ δ(t−1)

)
◦ δ(u−1) = δ(u) ◦ ps ◦ δ(u−1).

Let k be in the kernel of ps, then δ(u)(k) is also in this kernel. In fact,

ps(δ(u)(k)) = (δ(u) ◦ ps ◦ δ(u−1))(δ(u)(k))
= (δ(u) ◦ ps)(δ(u−1) ◦ δ(u))(k)) = δ(u)(ps(k)) = δ(u)(0) = 0.

To conclude, Ns is a complement of N as a kernel of a projector map over N and it is stable
by the representation therefore the lemma is proved.

Theorem III.32 (Maschke). 1. Representation of a finite group: Let (M, δ) be a rep-
resentation of a finite group G over a field K of characteristic zero or prime to the order
of G, then M is the direct sum of irreducible subspaces. In other words, any G-module
over a field K of characteristic zero or prime to the order of G is semisimple.

2. Group algebra of a finite group: If K is a field of characteristic zero or prime to
the order of G with G finite group, then the group algebra K[G] is semisimple.

Proof. 1. We argue by induction on the dimension n. For n = 1 there is no non-trivial
vector subspace, so the theorem is obviously verified. Suppose that the theorem is true
for any vector space of dimension less than n. If the representation is irreducible, then
the theorem is verified. Otherwise, there is a stable subspace N of dimension strictly less
than n. The lemma guarantees the existence of a stable complement Ns of N in M , also
of dimension strictly less than n. By the induction hypothesis, N and Ns are direct sums
of stable subspaces for the representation. The fact that N and Ns are complements of
each other permits to conclude. This proof works also for G-modules.

2. We want to prove that the kernel E of ps is an ideal. Let a ∈ E and r ∈ K[G]. Since ps
commutes with all the elements of G, ps commutes also with all the elements of K[G], we
have ps(ar) = psar = (psa)r = 0r = 0 and ps(ra) = (psr)a = (rps)a = r(psa) = 0. That
concludes the proof.
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III.3 Action by an affine group scheme

3 Action by an affine group scheme

In this section, we recall some basic notions connected to the notion of action by a group
scheme and important results for our problem. The reader can refer mainly to [DG70], [MFK94]
and [Wat79], for more details. We keep the same notations of the previous section; G :=
Spec(A) is an affine flat group scheme over S and X := Spec(B) is an affine scheme over S.

3.1 Definitions

Definition III.33. An action of G on X over S, denoted by (X,G), can be defined follow-
ing the three different points of view of seeing an affine group scheme (scheme, Hopf algebra,
functor):

1. (As schemes) An action (X,G) is a morphism of S-schemes µX : X×SG→ X making
the following diagrams commute:

X ×S G×S G
IdX×m

��

µX×IdG// X ×S G
µX
��

X ×S G µX
// X

X ×S G
µX // X

{e} ×X

ε×IdX

OO

2. (As Hopf algebra) An action (X,G) is the data of a structure of A-comodule algebra
on B.

3. (As functor of points) An action (X,G) is a functorial data on T of actions of the
abstract groups G(T ) on the sets X(T ), for any S-scheme T .

This three points of view are equivalent. The equivalence between (1) and (2) follows from
the Yoneda lemma. For the equivalence between (1) and (3), if µX : X×SG→ X is a S-scheme
morphism, we take µX ◦ − for the corresponding functor ψX : X ×S G → X. Conversely, if
ψX : X ×S G→ X is a functor, we can consider the image of the identity via the isomorphism
(X×SG)(X×SG) ' X(X×SG)×SG(X×SG), and take ψX(IdX×SG) to be the corresponding
S-scheme morphism µX : X ×S G→ X.
We have naturally the notion of invariant and equivariant morphism.

Definition III.34. Let X ′ be another affine scheme over S and G′ be an affine group scheme
over S together with an action (X ′, G′). We denote by µX′ : X ′×S G′ → X ′ its structural map.

1. A morphism φ : X → X ′ is called G-equivariant if φ ◦ µX = µX′ ◦ (φ× IdG).

2. A morphism φ : X → X ′ is called G-invariant if φ ◦ µX = φ ◦ p1 .

We take the opportunity to define the notion of orbit in this context.
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Chapter III. Actions of affine group schemes

Definition III.35. Suppose that G is a flat, finitely presented affine group scheme over S. Let
(X,G) be an action of G on X. For a T -point of X f : T → X, the orbit of f , denoted by
O(f), is the scheme-theoretic image (see Definition A.4) of the S-scheme morphism

(σ ◦ (IdG × f), p2) : G×S T → X ×S T

3.2 Quotients
3.2.1 Definitions

We will denote by C either the category of S-schemes or the category of S-algebraic spaces.

Definition III.36. 1. Let (X,G) be an action and consider the pair of maps

X ×S G //
p1

µX
// X

where µX is the action map and p1 the projection. If the cokernel of this pair of maps
exists in the category C, then we say that (X,G) admits a categorical quotient in the
category C, denoted X/G. The quotient X/G can be characterized up to isomorphism
by the existence of a map φ : X → X/G, called the quotient map, such that:
(a) φ ◦ µX = φ ◦ p1 (In other terms, "φ is constant on the orbits")
(b) For any morphism of C, ψ : X → Z with ψ◦µX = ψ◦p1, there is a unique morphism

χ : X/G→ Z such that χ ◦ φ = ψ.
2. A quotient Y is called universal quotient in C if, for any morphism of C, Y ′ → X/G,

Y ′ is a categorical quotient in C for the action (XY ′ , GY ′) and the projection XY ′ :=
X ×X/G Y ′ → Y ′ is the associated quotient map.

3. A quotient X/G is called geometric quotient if the following properties are satisfied:
(a) the quotient map φ : X → X/G is G-invariant;
(b) the geometric fibers of the quotient map φ : X → X/G are precisely the orbits of the

geometric points of X. (In particular, φ is surjective);
(c) the quotient map φ is submersive (that is, any subschemeM ′ ofM such that φ−1(M ′)

is closed in X is closed in M).
(d) φ∗(OX)G ' OX/G.

4. A quotient Y is called the fppf quotient if it corresponds to the sheaf associated to the
presheaf T 7→ X(T )/G(T ), for the fppf topology.

Proposition III.37. [MFK94, proposition 0.1] A geometric quotient is a categorical quotient
in the category of S-schemes. In particular, if φ : X → X/G is a geometric quotient map and
if g : X → Z is a G-invariant morphism, then there is a unique morphism f : X/G→ Z such
that g = f ◦ φ.
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Remark III.38. 1. If a geometric quotient exists then it is unique in the category of schemes.
Indeed, a categorical quotient in the category of S-schemes is unique in this category but
not necessarily in the category of algebraic spaces.

2. Let (X,G) be an action and X/G be a categorical quotient for this action. The data of
an action (X,G) over S is the same as the data of an action (X,GX/G) over X/G where
GX/G := G×S X/G.

3.2.2 Quotient by a finite locally free group scheme

Theorem III.39. Suppose that G is finite and locally free over S and let (X,G) be an action
over S. Denote by C := BA the ring of the invariants and by q : X → Spec(C) the natural
morphism induced by the inclusion C ⊂ B. Then

1. The scheme Spec(C) is a geometric quotient. Moreover, it is categorical in the category
of algebraic spaces.

2. The inclusion morphism C → B is integral and the quotient map q is quasi-finite, closed
and surjective. In particular, B is a finite C-algebra.

3. In addition, the Galois map (µX , p1) : X×S G→ X×Y X is surjective. In particular, for
any point ξ : Spec(T )→ X,

O(ξ) = p−1(ξ).

In other words, the action is transitive.

Proof. We can find the proof of this classical result for example in [DG70, III, §2, n°3]. Only
the fact that the quotient is categorical in the category of algebraic spaces is a little less classical
but the reader can find a detailed proof in [Con05, §3].

Corollary III.40. Let H be an affine, finite, locally free normal subgroup scheme of G supposed
flat.

1. In this case, the quotient G/H is the fppf quotient and representable by a group scheme
over S.

2. Moreover, an action (X,G) over S induces naturally an action (X/H,G/H) over S.

3.3 Induced actions
Definition III.41. We denote by H a flat closed subgroup of G. Suppose that H acts on a
scheme Z over S. We define an action of the group H on the scheme Z ×S G on the right via
(z, g)h = (zh, h−1g). Suppose that the categorical quotient for this action exists in the category
of schemes. Denote it Z ×H G := (Z ×G)/H, this scheme is called balanced product of Z
by G. The group scheme G acts on this scheme via the factor G. We say that the action
(X,G) is induced by the action (Z,H) if (X,G) is isomorphic to (Z ×H G,G). That is,
there exists a G-equivariant isomorphism Z ×H G ' X.
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We take the opportunity to mention the following lemma.

Lemma III.42. For H a flat closed subgroup of G, there is a G-equivariant isomorphism

H ×H G ' G

where H ×H G denotes the balanced product.

Proof. We can show easily that the morphism H ×S G→ G that maps (h, g) to hg induces the
required isomorphism.

Lemma III.43. [CEPT96, Lemma 1.2] If the quotient Z×HG exists as an universal categorical
quotient scheme, then it represents the fppf-sheaf, which, on an R-algebra T , takes the value
Z(T )×G(T )/H(T ).

3.4 Free actions and torsors
Definition III.44. 1. The morphism (µx, pr1) : X ×S G → X ×S X which maps (x, g) to

(g.x, x) is called the Galois map.
2. An action (X,G) is said to be without fixed points or free if the morphism (µx, pr1)

is a monomorphism.

Definition III.45. Let U be a scheme. A U-scheme Z with an action of G is a torsor over
U under the action of G, if:

1. Z is faithfully flat and quasi-compact over U ,
2. The morphism (µZ , pr1) is an isomorphism.

Torsors are often called principal homogeneous spaces.

Proposition III.46. ([DG70, III, §4, n°1, 1.3 and 1.9]) Let U be a S-scheme and Z a S-
scheme. The following assertions are equivalent:

1. An U-scheme Z with an action of G is torsor over U under the action of G.
2. (a) Z → U is surjective as morphism of sheaves for the fppf topology.

(b) The morphism (µZ , pr1) : Z ×S G→ Z ×U Z is an isomorphism.

We can relate free actions and quotients with torsors as follows:

Proposition III.47. If an action (X,G) defines a torsor over Y , then:
1. the map X → Y is a quotient for the action (X,G);
2. the group scheme G acts freely on X.

Proof. 1. See [DG70, III & IV].
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2. This is part of condition b. of the definition of torsor.

Conversely, for actions of finite, locally free group schemes, free actions define torsors.

Theorem III.48. (see [DG70, III, §2, n°3]) Suppose that G is finite, locally free over S and
let (X,G) be an action over S. Denote by q : X → Spec(BA) the canonical map associated
with the inclusion BA ⊂ B. If we suppose that the action is free then q is faithfully flat, finitely
presented and the Galois map induces an isomorphism X ×S G ' X ×Y X, in other words, X
is a G-torsor over Y .

3.5 Slices
Definition III.49. We say that the action (X,G) over S admits étale (respectively fppf) slices
if:

1. There is a categorical quotient Y in the category of the algebraic spaces.
2. For any y ∈ Y , there are:

(a) a scheme Y ′ := Y ′(y) and an étale (resp. fppf) S-morphism Y ′ → Y which contains
y in its image.

(b) a closed subgroup G0 := G0(y) of G(Y ′) over Y ′ which stabilizes some point x of X
above y, (this means that G0k(x) ' IG(x)).

(c) a Y ′-scheme Z := Z(y) with a G0-action such that Y ′ = Z/G0 and the action
(X ×Y Y ′, GY ′) is induced by (Z,G0).

The subgroup G0 is called a slice group.

Remark III.50. 1. Roughly speaking, for the étale (respectively fppf) topology, an action
which admits slices can be described by the action of a stabilizer of a point.

2. The action (XY ′ , GY ′) should be thought of as a G-stable neighborhood of an orbit. Such a
neighborhood induced from an action (Z,H) where H is the stabilizer of a point is called
a"tubular neighborhood"

3.6 Equivariant sheaves
Let µX : X ×S G → X be the structural map of the action and m : G ×S G → G be the

multiplication map for the action.

Definition III.51. A G-equivariant sheaf F on X is a sheaf with an action of G. More
precisely, it is a pair (F, β) where F is a quasi-coherent OX-module, and β is a OG×SX-module
map β : µX∗F → pr1

∗F such that:
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1. the diagram
(IdG × µX)∗pr2

∗F
pr∗23β // pr∗2F

(IdG × µX)∗µ∗XF

(IdG×µX)∗β
OO

(m× IdX)∗µ∗XF

(m×IdX)∗α

OO

is commutative in the category of OG×SG×SX-modules;
2. the pullback

(ε× IdX)∗β : F → F

is the identity map.

Remark III.52. For an explanation, compare with the relevant diagrams of the definition of
an action (Chapter III, Section 3, §3.1).

There is naturally a definition of an equivariant morphism of equivariant sheaves.

Definition III.53. Let (F, β) and (F′, β′) be G-equivariant sheaves on X. An equivariant
morphism α : F → F′ is a morphism of sheaves such that the diagram:

µX
∗F

β

��

µX
∗α // µX

∗F′

β′

��
pr1
∗F

pr1∗α
// pr1

∗F′

is commutative in the category of OG×SX-modules.

We denote by QcohG(X) the category of G-equivariant quasi coherent sheaves on X.
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Quotient stacks

In this chapter, G denotes a flat group scheme over S and X denotes a scheme over S. We
consider an action (X,G) over S whose structural map is denoted by µX : X ×S G→ X. For
the readers’ convenience, we have reviewed in Appendix B all the material on stacks required
for understanding this thesis. This chapter introduces the notion of quotient stack and some
basic properties that one can find in the literature (Project stacks, [Wan11]...). Some of the
folklore results are stated without proof. Moreover, section 9 "Quasi-coherent sheaves over
quotient stacks" is a generalization of [AOV08] §2.1.

1 Basic definitions
Definition IV.1. We define the groupoid quotient [X/G] associated to the action
(X,G) in the following way. For U an S-scheme,

1. the sections (i.e. the objects) of [X/G] over U are G-torsors E → U provided with
G-equivariant maps f : E → X;

2. a morphism from an object E → U provided with the G-equivariant map f : E → X

to the object E ′ → U ′ provided with the G-equivariant map f ′ : E ′ → X is a cartesian
diagram

E ′

��

g // E

��
U ′ // U

where g is a G-equivariant map such that g ◦ f = f ′.
In particular, if Z is a S-scheme, we write BZG = [Z/G] for the quotient stack associated to
the trivial action of G on Z and we call it the classifying stack of G over Z.

Remark IV.2. 1. Let Y be the quotient for the action (X,G). We have [X/G] ' [X/GY ]
(see remark III.38).

2. A morphism from an object E → U provided with the G-equivariant map f : E → X to the
object E ′ → U provided with the G-equivariant map f ′ : E ′ → X is always an isomorphism
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by [DG70, III, §4, n°4, proposition 1.4] and this shows that the fiber [X/G](U) is a
groupoid.

More precisely, the groupoid [X/G] is a stack.

Proposition IV.3. The groupoid [X/G] defined above is a stack called the quotient stack
associated to the action (X,G).

Proof. Let e, e′ be sections of [X/G](U) corresponding respectively to a torsor E → U provided
with the G-equivariant map f : E → X and a torsor E ′ → U ′ provided with the G-equivariant
map f ′ : E ′ → X. Then IsoU(e, e′) is the fppf sheaf given by the quotient (X ×X×SX E ×U E ′)
by the free product action of G. Moreover, descent theory shows that this sheaf is in fact a
scheme.
When E = E ′ and f = f ′ the isomorphisms correspond to elements of G which preserve f . In
other words IsoU(e, e) is the stabilizer of the G-map f : E → X.
Since any torsor E → U is locally trivial in the fppf topology it determines a descent data as
follows: Let {pi : Ui → U} be an étale cover on which E → U is trivial. Then we have an
equivariant isomorphism φi : p∗iE → Ui×S G, for any i. If φi,j is the pullback of φi to Ui×U Uj,
then the φi,j’s satisfy the cocycle condition i.e. φi,j ◦ φi,k = φj,k.
Descent theory gives us the opposite direction. Given torsors (not necessary trivial) Ei → Ui
and isomorphisms Ei|Ui×UUj → Ej|Ui×UUj satisfying the cocycle condition, there is a torsor
E → U such that Ei = p∗iE, for any i. This is condition 2. in Definition B.9 of a stack.

Definition IV.4. We can naturally define a morphism p : X → [X/G], that we call the
quotient stack map, to be the morphism corresponding, by the Yoneda lemma B.11, to the
trivial G-torsor pr1 : X×SG→ X provided with the G-equivariant morphism µX : X×SG→ X.
More precisely,

1. given an object u : U → X of X(U), we define u∗p to be the trivial G-torsor U ×SG→ U

provided with the equivariant map µX ◦ (u× IdG) : U ×S G→ X;

2. given f : U ′ → U a morphism from an object U ′ → X of X(U ′) to an object U → X of
X(U), we define f ∗p to be the cartesian diagram

U ′ ×S G
f×IdG//

pr1
��

U ×S G
pr1
��

U ′
f

// U
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IV.2 The quotient stack map

2 The quotient stack map
Lemma IV.5. Let u : U → [X/G] and let E be the associated G-torsor over B together with
a G-equivariant morphism f : E → X (see Yoneda lemma B.11). Then the diagram

E

��

f // X

p

��
U u

// [X/G]

is 2-cartesian.

Proof. Let U ′ be an S-scheme. Consider the category U ×[X/G] X(B′). Its objects are triplet
(b : U ′ → U, x : U ′ → X,ψ) where ψ : b∗u ' x∗p is an isomorphism or, in other words,
(by the Yoneda lemma B.11) an isomorphism ψ : b∗E ' x∗(X ×S G), that is, an isomophism
ψ : b∗E ' U ′ ×S G. For a G-torsor, the data of a trivialisation ψ is equivalent to the data
of a global section (see [DG70, III, §4, n°2, corollaire 1.5]). Thus, the data of the triplet
(b : U ′ → U, x : U ′ → X,ψ) is equivalent to the data of the pair (b : U ′ → U, s) where
s : U ′ → b∗E is a section, and this is also equivalent to the data of a morphism b̃ : U ′ → E.
Indeed, given (b : U ′ → U, s), we have the composite map b̃ : T → b∗E → E and given
b̃ : U ′ → E, we have the composite map b : U ′ → E → U and the section s : U ′ → b∗E given by
the universal property of the pullback. This establishes the isomorphism U ×[X/G] X ' E.

Remark IV.6. In particular, taking U = X and p = u in the previous lemma, we obtain that
the diagram

X ×S G
pr1

��

µX // X

p

��
X p

// [X/G]

is 2-cartesian.

Proposition IV.7. The canonical morphism p : X → [X/G] is surjective, quasi-compact, flat
and representable. Moreover, the diagonal ∆ : [X/G]→ [X/G]×S [X/G] is representable.

Proof. By the previous lemma, the morphism X → [X/G] is representable. For any U →
[X/G], the corresponding G-torsor E → U is quasi-compact, surjective and flat. Since G is
supposed flat, p has the same properties (see [DG70, III, §4, n°2, Corollaire 1.9]).
We want to show that ∆ is representable, that is, for any two morphisms Z → [X/G]×S [X/G]
where Z is a scheme, [X/G]×[X/G]×S [X/G]Z is a scheme, or equivalently, for any two morphisms
α : Z → [X/G] and β : Z → [X/G], Z ×[X/G] Z is a scheme. Denote by E → Z the G-torsor
associated to β. Choose a trivialization of the torsor E ' Z ×[X/G] X, that is, the data of a
covering {Zi → Z} of Z and sections si : Zi → Zi ×[X/G] X such that for every index i the
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Chapter IV. Quotient stacks

following diagram commutes:

Zi ×[X/G] X

pr2
��

Zi ×[X/G] Z //

��

Zi

��

pr2◦si
//

si

88

X

xx
Z α

// [X/G]

Then Fi := Zi ×[X/G] Z ' Zi ×X (X ×[X/G] Z) ' Zi ×X E and Fi is a scheme. Setting
Fi,j := (Zi×Z Zj)×[X/G] Z, we obtain open immersions Fi,j → Fi which permit to glue the F ′is
into a scheme F := Fi/ ∼ where x ∼ y if x and y are in the same intersection Fjk and their
images under the map Fjk → Fj are the same. Since the F ′is form a covering of Z ×[X/G] Z,
there is a map from F to Z ×[X/G] Z, which is an isomorphism. This implies that Z ×[X/G] Z

is represented by F .

3 Change of spaces
In this section, we consider φ : X ′ → X a G-equivariant morphism of schemes provided

with a right G-action. Then, we define a natural morphism of stacks Φ : [X ′/G] → [X/G] as
follows, for any S-scheme T , the morphism Φ(T ) : [X ′/G](T )→ [X/G](T ) maps a G-torsor P
over T provided with a G-equivariant morphism f : P → X ′ to the same G-torsor but provided
with the G-equivariant morphism φ ◦ f : P → X.
Lemma IV.8. Under the previous hypotheses, the following diagram is 2-cartesian:

X ′

��

φ // X

��
[X ′/G] Φ

// [X/G]

Proof. See the proof of Lemma IV.5
Lemma IV.9. The morphism Φ : [X ′/G]→ [X/G] is representable. If X ′ → X has a property
which is local for fppf topology on the target, then the associated quotient morphism has the
same property.

4 Quotient stacks as Artin stacks
The following lemma explains how we see the properties of the diagonal map of [X/G] over

S thanks to the Galois map and reciprocally.
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IV.5 G-invariant morphisms and G-torsors over stacks

Lemma IV.10. If the diagonal map ∆ : [X/G] → [X/G] ×S [X/G] has a property which is
stable under base change, then the Galois map X ×S G → X ×S X has the same property.
Conversely, if the Galois map has a property stable under base change and faithfully flat quasi
compact descent then ∆ has also this property.

Proof. Write R for a property stable under base change. Suppose that the diagonal map ∆ has
property R. Without difficulties thanks to Remark IV.6, we get the following natural sequence
of isomorphisms:

[X/G]×[X/G]×S [X/G] (X ×S X) ' X ×[X/G] X ' X ×S G

Besides the projection [X/G]×[X/G]×S [X/G]X×SX → X×SX corresponds to the mapX×SG→
X ×S X which has property R, by base change.
Conversely, we suppose that property R is stable under base change and faithfully flat, quasi
compact descent and that the Galois map has this property R. As a consequence of what we say
below, after the base change X×SX → [X/G]×S [X/G], the diagonal map has property R . Let
Z → [X/G]×S [X/G] be a morphism where Z is a scheme, and setW := [X/G]×[X/G]×S [X/G]Z.
Since by Proposition IV.7, the diagonal map is representable, it suffices to prove that W → Z

has property R. Set Z ′ := Z ×[X/G]×S [X/G] X ×S X. Then the map W ′ := W ×Z Z ′ → Z ′ has
property R. As X → [X/G] is faithfully flat and quasi compact, the base change Z ′ → Z is
also faithfully flat and quasi compact, thus by descent, W → Z has property R, hence also ∆.

Proposition IV.11. Suppose that G is affine, finitely presented over S and that X is an affine
scheme. Then [X/G] is an Artin stack.

Proof. The diagonal map is representable by Lemma IV.7. As X×SG→ X×SX is a morphism
between two affine schemes, it is separated and quasi-compact, so it is the diagonal map ∆.
Moreover, applying Artin’s criterium B.14, since p is faithfully flat and finitely presented (cf.
Lemma IV.7), it follows that [X/G] is an Artin stack.

5 G-invariant morphisms and G-torsors over stacks
Definition IV.12. Let Y be an S-stack and π : X → Y a morphism of stacks. We say that π
is a G-invariant morphism if the following assertions are satisfied:

1. the diagram
X ×G
pr1
��

µX // X

π
��

X π
// Y

is 2-commutative. Equivalently, there exists of a 2-morphism ρ : pr∗1π → µ∗Xπ;
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Chapter IV. Quotient stacks

2. for a scheme B, x ∈ X(U) and g ∈ G(U), denote by ρx,g the 2-morphisms:

x∗π ' (x, g)∗pr∗1π
ρx,g // (x, g)∗µ∗Xπ ' (x.g)∗π

. For all x ∈ Z(S) and g1, g2 ∈ G(S), the morphisms ρx,g make the following diagram

x∗π

ρx,g1g2

��

ρx,g1 // (x.g1)∗π
ρx.g1,g2
��

(x.(g1g2))∗π ((x.g1).g2)∗π

commutative.

Remark IV.13. Let π : X → Y be a G-invariant morphism of stacks. For any scheme U
provided with a morphism α : U → Y, the fiber product X ×Y U is a sheaf of sets defined for
any scheme T by:

(X ×Y U)(T ) = {(a, u, φ)|a ∈ X(T ), u ∈ U(T ) and an isomorphism φ : a∗π → u∗α}.

We define a right G-action on X ×Y U via (a, u, φ).g = (a.g, u, φ ◦ ρ−1
a,g), for g ∈ G(T ). Thus,

by construction, the morphism X ×Y U → U is G-invariant and the morphism X ×Y U → X is
G-equivariant.

Definition IV.14. Let Y be a stack and π : X → Y be a G-invariant morphism of stacks. A
morphism X → Y is called a G-torsor if for any scheme U provided with a morphism U → Y,
the induced morphism X ×Y U → U is a G-torsor.

6 Characterizing quotient stacks

Lemma IV.15. The quotient stack map p : X → [X/G] is a G-invariant morphism.

Proof. Consider the cartesian diagram of Remark IV.6

X ×S G
pr1
��

µX // X

p

��
X p

// [X/G]
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IV.6 Characterizing quotient stacks

Thus, IdX×SG gives an isomorphism ρ−1 : µ∗Xp→ pr∗1p corresponding to the cartesian diagram

(X ×S G)×S G
pr1
��

φ // (X ×S G)×S G
pr1
��

X ×S G // X ×S G

where the morphism φ : X ×S G ×S G → X ×S G ×S G maps (x, g1, g2) to (x, g1, g1.g2). So,
for any scheme U , x ∈ X(U) and g ∈ G(U), the morphism ρx,g corresponds to the cartesian
diagram

U ×S G
ψ //

pr1
��

U ×S G
pr1
��

U // U

The morphism ψ : U ×S G → U ×S G maps (u, g0) to (u, g(u)−1g0). Therefore, since, for any
g1, g2 ∈ G, g−1

2 g−1
1 = (g1g2)−1, p is G-invariant.

Remark IV.16. Since p is a G-invariant morphism, we can provide X ×[X/G] X with a G-
action (see Remark IV.13). The morphism (µX , pr1) : X ×S G → X ×[X/G] X maps (x, g) to
(µX(x, g), x, ρ−1

x,g) and the associativity condition on ρ implies that the Galois group (µX , pr1) is
a G-equivariant morphism of sheaves of sets.

Lemma IV.17. [Wan11, Lemma 2.1.1.] Let Y be an S-stack and π : X → Y be a G-torsor.
Then, there is an isomorphism Y→ [X/G] of stacks making the following triangle commutes:

X
π

��

µX

""
Y

∼ // [X/G]

Remark IV.18. 1. Directly by the lemma, in the particular case where Y is a scheme over
S and X is a G-torsor over Y , Y ' [Z/G], so the two notions of quotient as scheme and
as stack coincide.

2. Let X be an S-scheme and give it the trivial G-action. Lemma IV.17 implies that S →
BSG is G-invariant, so by base change X → BSG×SX is also G-invariant. Let u : B →
X be a S-scheme morphism. Denote by P the G-torsor associated to v : B → X → BSG.
By Lemma IV.5, the fiber product X ×BSG×SX B ' S ×BSG B is isomorphic to P . The
morphism P → X is P → B composed with u. The previous lemma then gives an
isomorphism BSG ×S X ' BXG. This implies that for any G-torsor P over U , any
G-invariant morphism P → X factorizes via an unique morphism U → X.
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7 Induced actions
Proposition IV.19. We denote by H a flat closed subgroup of G and [X ×H G/G] stands for
the quotient stack associated to the induced action (see Definition III.41). We have a canonical
isomorphism

[X/H] ' [X ×H G/G]

Proof. Given B an S-scheme, we define the morphism φ(B) : [X/H](B) → [X ×H G/G](B)
by sending an H-torsor E over B provided with an equivariant map E → X to the G-torsor
E×H G over B provided with the induced equivariant map E×H G→ X×H G (see [DG70, III
§4 n°3, 3.1]). The inverse morphism maps a G-torsor F over B provided with a G-equivariant
map E → X ×H G to the H-torsor F ×X×HG X over B provided with the G-equivariant map
F ×X×HG X → X. (To show that this defines a G-torsor, we remark that H acts freely on
X ×G). One can check that these morphisms are inverses of each other.

8 Change of groups and double quotient stacks
In this section, H denotes a flat, finite, locally free, closed subgroup of G. Denote by

π : G → G/H the quotient map. We keep the notations of the previous section. Since the
action of H on G is free, by Theorem III.48, G is H-torsor over G/H. Then, by Lemma IV.17,
we have an isomorphism G/H ' [G/H].

Definition IV.20. We define a morphism λ : BSH → BSG called the induction morphism
as follows. For any S-scheme T , λ(T ) : BSH(T )→ BSG(T ) sends a G-torsor P over T to the
balanced product (P ×S G)/H which is a G-torsor over S.

Lemma IV.21. [Wan11, Lemma 2.4.1.] The morphism λ : BSH → BSG is representable and
finitely presented.

Lemma IV.22. [Wan11, Lemma 2.4.2.] The right H-torsor G→ G/H induces a left G-torsor
G/H → BSH. In particular,

[(G/H)/G] ' BSH

.

9 Quasi-coherent sheaves over quotient stacks
Proposition IV.23. Giving a quasi-coherent sheaf F on [X/G] (see Definition B.26) is equiv-
alent to associating for any S-scheme T ,

1. to each G-torsor P → T provided with a G-equivariant morphism αP : P → X an O(T )-
module F(P → T, αP ). This O(T )-module defines a presheaf of O(T)-modules by sending
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IV.9 Quasi-coherent sheaves over quotient stacks

a Zariski-open subscheme U of T to the O(U)-module F(P |U → U, αP |U). We require this
presheaf to be a quasi-coherent sheaf on O(T ),

2. to each commutative diagram
X

P ′
g //

αP ′
>>

��

P

αP

``

��
T ′

f
// T

where the columns are G-torsors and g is G-equivariant, a morphism

F(P → T, αP )→ F(P ′ → T ′, α′P )

that is linear with respect to the natural ring homomorphism O(T ) → O(T ′). This mor-
phism induces a homomorphism of quasi-coherent sheaves

F(P → T, αP )→ f∗F(P ′ → T ′, αP ′)

defined by the given homomorphism

F(P |U → U, αP |U)→ F(P ′|f−1(U) → f−1(U), αP |U)

for each Zariski-open subscheme U of T . We require the corresponding homomorphism
f ∗F(P → T, αP )→ F(P ′ → T ′, αP ′) to be an isomorphism.

Proof. This new definition implies easily Definition B.26, by the Yoneda lemma for stack B.11.
Conversely, let F be a quasi coherent sheaf over [X/G]. Let (P → T, αP : P → X) be an element
of [X/G](T ). By the Yoneda lemma again, it corresponds to a morphism t : T → [X/G] and we
have an O(T )-module F(P → T, αP ) := t∗F. Applying [LMB00, Lemme 13.2.1 and Remarque
13.2.2], the module F is cartesian, so we obtain already 2. of the proposition. Fix an atlas
U → [X/G]. Denote by T ′ the fibered product T ×[X/G] U . The morphism T ′ → T is fppf (by
base change of the fppf morphism U → [X/G]). By hypothesis, F|U is a quasi-coherent O(U)-
module, hence also its inverse image via T ′ → U that we denote FT ′ . Moreover, by Definition
B.26 of a quasi coherent sheaf, we have also that the inverse image via T ′ → T of the preimage
F(P → T, αP ) of F via T → [X/G] is isomorphic to FT ′ .
Set T ′′ := T ′ ×T T ′ and let p, q be the two projections of T ′′ on T ′. Then, as F is a cartesian
module, we have a canonical isomorphism β : p∗FT ′ ' q∗FT ′ as quasi-coherent O(T ′′)-modules.
The faithfully flatness descent theory of quasi-coherent modules says that the O(T ′)-module
FT ′ provided with the descent datum β results by the base change T ′ → T from a unique
O(T ) (quasi-coherent) module L. But, as the base change T ′ → T applied to F(P → T, αP )
gives the same sheaf FT ′ with the same descent datum, unicity implies that L is isomorphic to

53



Chapter IV. Quotient stacks

F(P → T, αP ). Thus, F(P → T, αP ) is quasi-coherent.

Proposition IV.24. The categories Qcoh([X/G]) and QcohG(X) are equivalent.

Proof. We start by defining a functor Φ : QCohG(X)→ QCoh([X/G]).
Suppose that F is an object of QCohG(X). Let T be an S-scheme and let P → T be a G-
torsor together with a G-equivariant morphism αP : P → X. α∗PF is a quasi-coherent sheaf
with a G-action since αP is a G-equivariant map. On the other hand, by descent theory, we
have an equivalence between the category of G-equivariant quasi-coherent sheaves on P and
the category of quasi-coherent sheaves on T (see [FGI+05, Theorem 4.46]). Then, we define
Φ(F)(P → T, αP ) to be a quasi-coherent sheaf on T whose pullback to P is isomorphic to α∗PF.
We can see that the map that sends (P → T, αP ) to Φ(F)(P → T, αP ) has a natural structure
of a quasi-coherent sheaf on [X/G], and that a homomorphism f : F → F′ of G-equivariant
quasi-coherent sheaves on X induces a homomorphism φ(f) : Φ(F)→ Φ(F′) of quasi-coherent
sheaves on [X/G]. This defines the functor Φ.
Now, we define the inverse functor Ψ : QCoh([X/G])→ QCohG(X).
Given a quasi-coherent sheaf F on [X/G], we define the quasi-coherent sheaf Ψ(F) on X to be
the sheaf F(G ×S X → X,µX) associated to the trivial torsor G ×S X → X. Then, by 2. of
the previous propositon, we get an isomophism

β : µ∗XF(G×S X → X,µX)→ pr∗1F(G×S X → X,µX)

which satisfies the cocycle condition of Definition III.51, thus defining an action of G on F(G×S
X → X,µX). We can extend then Ψ naturally to a functor Ψ : QCoh([X/G])→ QCohG(X).
One can prove that the composite Φ ◦ Ψ equals IdQCohG(X). It is slightly less trivial to show
that Ψ ◦ Φ is isomorphic to IdQcoh([X/G]). The point is the following. Given a quasi-coherent
sheaf F on [X/G] and a G-torsor ρ : P → T over an S-scheme T together with a G-equivariant
morphism αP : P → X, the pullback pr2 : P ×T P → P of P → T to P has a canonical section,
inducing a cartesian diagram:

P ×T P
pr2
��

// G×S X

��
P αP

// X

.

Since the pullback ρ∗F(P → T, αP ) is isomorphic to F(P ×T P → P, pr2), this diagram induces
an isomorphism of ρ∗F(P → T, αP ) with α∗PF(G×S X → X,µX). Moreover, by definition, one
has that

ρ∗Φ(Ψ(F))(P → T, αP ) ' α∗PF(G×S X → X,µX).

Hence, we get an isomorphism
ρ∗Φ(Ψ(F)) ' ρ∗F.
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This isomorphism is GT -equivariant; hence it descends to the expected isomorphism

Φ(Ψ(F)) ' F.

10 Moduli spaces for quotient stacks
Stacks are objects difficult to understand. In order to have more information about them we

associate to them a more intuitive object (such as a scheme or an algebraic space) “sufficiently
close” to it like a coarse moduli spaces. Here, we define moduli spaces in the particular case of
quotients even though the definitions are the same for general Artin stacks. For more details,
we can refer to the articles [AOV08] and [Alp08]. In this section, we suppose that G is affine,
flat and finitely presented over S.

10.1 Good moduli spaces

Let φ : [X/G]→M be a morphism where M is an algebraic space.

Definition IV.25. We say that φ : [X/G] → M is a good moduli space if the following
properties are satisfied:

1. the map φ is quasi-compact, quasi-separated and the induced functor φ∗ : Qcoh([X/G])→
Qcoh(M) on the quasi-coherent sheaves is exact;

2. the natural map OM→̃φ∗O[X/G] is an isomorphism.

Remark IV.26. The functor φ∗ : Qcoh([X/G])→ Qcoh(M) makes sense thanks to Proposition
B.27, since the map φ is quasi-compact, quasi-separated.

10.2 Coarse moduli spaces

Here, write C for the category of schemes or the category of algebraic spaces.

Definition IV.27. We say that φ : [X/G] → M is a coarse moduli space in C if the
following properties are satisfied:

1. for any algebraically closed field k, [[X/G](Ω)]→M(Ω) is a bijection, where Ω = Spec(k)
and [[X/G](Ω)] denotes the set of isomorphism classes of objects in the small category
[X/G](Ω);

2. the map φ is universal for the maps taking value in C (This means that if N is an object
of C then any morphism [X/G]→ N factorizes via a morphism M → N of C).
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10.3 Existence of a coarse moduli space
Theorem IV.28. Suppose that the group scheme G and the scheme X are finitely presented
over S and that the inertia group stack I[X/G] is finite (cf. Definition B.17). The quotient stack
[X/G] admits a coarse moduli space φ : [X/G]→M such that φ is proper.

Proof. Since G is finitely presented over S, so is X → [X/G] (X is a torsor over [X/G]).
By Lemma IV.7, since X → [X/G] is surjective, flat of finite presentation and X → S is
also of finite presentation, [X/G] → S is of finite presentation. By [Con05, Theorem 1.1],
the hypotheses insure that the quotient stack admits a coarse moduli space that we denote
φ : [X/G]→M such that φ is proper.

10.4 Relations with quotients
Lemma IV.29. Let M be an algebraic space. The datum of a morphism φ : [X/G] → M is
equivalent to the datum of a G-invariant morphism of S-algebraic spaces f : X →M .

Proof. If φ is given, we take f := φ ◦ p. Conversely, let f : X → M be a morphism such that
f ◦ p1 = f ◦ µX . We define a morphism φ : [X/G] → M , as follows. For any scheme U , the
morphism φ : [X/G](U) → M(U) sends a G-torsor P over U provided with the G-equivariant
morphism P → X to the canonical morphism U = P/G → M . We can easily check that
f = φ ◦ p.

In particular, we have the following description of coarse moduli spaces as quotients.

Lemma IV.30. A geometric quotient f : X → Y which is categorical in the category of
algebraic spaces induces a coarse moduli space [X/G]→ Y .

Proof. Let k be an algebraically closed and let f : Spec(k) → X be a Spec(k)-point over
S. Then as the geometric fibers of f are the orbits, HomS-Sch(Spec(k), Y ) is the set of the
orbits of the k-points of X which is exactly the set [[X/G](Spec(k))], which denotes the set
of isomorphism classes of objects in the small category [X/G](Spec(k)). For any algebraic
space N , any G-invariant morphism [X/G] → N , Moreover, if we suppose that [X/G] → N

is a morphism to an algebraic space induces by the previous lemma a G-invariant morphism
X → N . By the universal property of the quotient, the morphism X → N factorizes through
Y . Thus, the morphism [X/G] → N factorizes through Y , so [X/G] → Y is a coarse moduli
space.

Remark IV.31. If the morphism f : X → M defines a universal categorical quotient, if
[X/G]→M is a coarse moduli space, then for any base change M ′ →M , [X/G]×M M ′ →M ′

is a coarse moduli space.
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Inertia group schemes, orbits

For the definition of inertia groups, we can refer to [DG70, III, §2, n°2]. In this chapter,
G := Spec(A) is a flat, affine group scheme over S and X := Spec(B) is a flat scheme over S.
Let (X,G) be an action over S. We investigate the properties of inertia groups of an action
by a group scheme that generalize the ones of the classical case, lot of times admitted but not
readily found.

1 Definitions
Definition V.1. 1. The inertia functor IG is the following fiber product of the Galois

map (µX , p1) and the diagonal map ∆X :

IG
pr2 //

pr1

��

X

∆X

��
X ×S G(µX ,p1)

// X ×S X

2. Let ζ : Spec(T ) → X be a T-point. The inertia group at ζ, denoted by IG(ζ), is the
group scheme over T defined as the fiber product:

IG(ζ)
p′2
��

p′1 // Spec(T )
ζ

��
IG pr2

// X

In particular, for x ∈ X a topological point, T = k(x) the residual field at x, ζ the
canonical morphism Spec(k(x))→ X, we denote IG(ζ) by IG(x) and we call it the inertia
group at x.

Naturally from the definition, we obtain the following properties.
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Proposition V.2. 1. (Description on the T -points) Let ξ : Spec(T )→ X be a T -point.
For any T -algebra T ′,

IG(ξ)(T ′) = {g ∈ G(T ′)|g.ξT ′ = ξT ′}

where ξT ′ : Spec(T ′)→ Spec(T )→ X.
2. (Trivial action)Suppose that G is flat over S. Let (S, G) be the trivial action and

ξ : Spec(T )→ S be a T -point of S. Then

IG(ξ) = GT .

3. (Base change) Let ξ : Spec(T ) → X be a T -point of X. For any base change b :
Spec(T ′)→ Spec(T ), if we set ξ′ := ξ ◦ b : Spec(T ′)→ X then

IG(ξ′) = IG(ξ)×Spec(T ) Spec(T ′).

4. (Stabilizer) Let ξ : Spec(T ) → X be a T -point of X. We can define IG(ξ) as the fiber
product:

IG(ξ)
p2

��

p1 // G×S Spec(T )
µX◦(Id,ζ)
��

Spec(T )(ζ,Id)◦∆
// X ×S spec(T )

Remark V.3. 1. It follows from 4. of the proposition that the inertia group IG(ξ) of ξ is a
closed subgroup of GT .

2. The characterization of the inertia group via 4. is exactly the definition of stabilizer of
a point in [MFK94, Definition 0.4]. For the definition of freeness, we obtain directly
that the action (X,G) is free if and only if all the inertia groups are trivial.

2 Conjugate inertia groups
Lemma V.4. Suppose that G is finite over S where S := Spec(BA). Let q ∈ S, denote by pi,
i ∈ {1, ..., r} the primes above q and by k an algebraic closure of k(q). For any i, j ∈ {1, ..., r},
there exists gi,j ∈ G(k) such that for any k-algebra T ,

(IG(pi)×k(pi) k)(T ) = (gi,j)T (IG(pj)×k(pi) k)(T )(gi,j)−1
T .

Proof. Denote by ξpi the canonical morphism Spec(k(pi))→ X, for all i ∈ {1, ..., r}. Since we
have the following exact sequence for geometric points :

X(k)×G(k) ⇒ X(k)→ S(k)→ 1
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there exists gi,j ∈ G(k) such that (ξpi)k = gi,j(ξpj)k.
Thus, for any k-algebras T ,

(IG(pi)×k(pi) k)(T ) = {g ∈ G(T )|gT ((ξpi)k)T = ((ξpi)k)T}
= {g ∈ G(T )|gT (gi,j(ξpj)k)T = (gi,j(ξpi)k)T}
= {g ∈ G(T )|gT (gi,j)T ((ξpj)k)T = (gi,j)T ((ξpi)k)T}
= (gi,j)T (IG(pj)×k(pi) k)(T )(gi,j)−1

T .

Corollary V.5. Suppose G is finite over S where S := Spec(BA). Suppose that the inertia
group is trivial at one point p of X over q ∈ S. Then the inertia group is trivial at any point
above q ∈ S.
Proof. Denote by p0 the prime where the inertia is trivial and by pi, i ∈ {1, .., r} the other
primes over q. By the previous lemma, for any i 6= 0, there exist gi,j ∈ G(k) such that for all
k-algebras T ,

(IG(pi)×k(pi) k)(T ) = (gi,1)T (IG(p0)×k(p0) k)(T )(gi,1)−1
T = {e}.

As a consequence, IG(pi)k is trivial, thus also IG(pi).

3 Inertia for actions induced by subgroups or quotients
Proposition V.6. Let H be a subgroup scheme of G and f be a T -point of X. Then

IH(f) ' IG(f) ∩HT .

In particular, if H is a normal subgroup of G, IH(f) is a normal subgroup of IG(f).
Proof. We have

IG(f) ∩HT := IG(f)×GT HT ' (GT ×XT Spec(T ))×GT HT ' IH(f).

Proposition V.7. Let k be a field. Suppose that G is finite over k and let H be a normal
subgroup scheme of G, f be a k′-point of X where k′ is a field and f̄ = π ◦f with π : X → X/H

the quotient map. Then
IG/H(f̄) ' IG(f)/IH(f)

Proof. We write fk′′ : Spec(k′′) → Spec(k′) → X and f̄k′′ := π ◦ fk′′ , where k′′ is a k′-algebra.
Since G/H is an universal fppf quotient, the following sequence is exact:

1→ Hk′ → Gk′ → (G/H)k′ → 1
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The goal is to prove that this sequence is exact:

1→ IH(f)→ IG(f)→ IG/H(f̄)→ 1

Left and middle exactness are clear. So, we have just to prove the surjectivity of the morphism
IG(f)→ IG/H(f̄). By definition, for any k′-algebra k′′, we have:

IG/H(f̄)(k′′) = {g ∈ G/H(k′′)|gf̄k′′ = f̄k′′}

Let k′′ be a k′-algebra and g0 ∈ IG/H(f)(k′′), in particular, g0 ∈ G/H(k′′). Since πG : Gk′ →
(G/H)k′ is surjective, there are a k′′-algebra k0 and g ∈ Gk′(k0) such that πG(g) = g0k0 . By
definition of the action (X/H,G/H) induced by the action (X,G), πG(g)π(fk′) = gfk0 = fk0 .
So, there is a k0-algebra k1 and h ∈ H(k1) such that hgfk1 = fk1 and so hg ∈ IG(f)(k1) and
π(hg) = g0k1 . This proves the proposition.

4 Examples
1. Action (A1

k, αp).
Let R := k be a field of characteristic p, A1

k := Spec(k[x]) and let αp := Spec(A0) where
A0 := k[v]/vp is a Hopf algebra over k such that the comultiplication is given by the mor-
phism ∆0 : A0 → A0 ⊗R A0 which maps v to v ⊗ 1 + 1⊗ v where v denotes the image of
v in A0. We consider the action (A1

k, αp) defined by the k-linear map ρA1
k

: A1
k → A1

k⊗k A
which maps x to x ⊗ 1 + 1 ⊗ v. Then, the Galois map Gal0 : A1

k ×k αp → A1
k ×k A1

k

corresponds to the morphism Gal]0 : k[x ⊗ 1, 1 ⊗ x] → k[x] ⊗ k[v]/vp sending x ⊗ 1 to
x ⊗ 1 + 1 ⊗ v and 1 ⊗ x to x ⊗ 1. Moreover, we obtain that the ring of invariants is
k[x]αp = k[xp]. Denote by IA0(t) the Hopf algebra corresponding to the inertia group
Iαp(t) at a point t.

Take ξ0 : Spec(k) → A1
k the morphism corresponding to the morphism z] : k[x] → k

mapping x to 0. So, the diagonal map Dξ0 : Spec(k) → A1
k ⊗k A1

k corresponds to the
morphism D]

ξ0 : k[x⊗ 1, 1⊗ x]→ k which maps x⊗ 1 to 0 and 1⊗ x to 0. By definition,
the inertia group Iαp(ξ0) is defined as the fiber product (A1

k ×k αp) ×A1
k
×kA1

k
Spec(k) =

Spec((k[x] ⊗ k[v]/vp) ⊗k[x⊗1,1⊗x] k). We have Gal]0(1 ⊗ x) = x ⊗ 1, D]
ξ0(1 ⊗ x) = 0,

Gal]0(x⊗ 1− 1⊗ x) = 1⊗ v and D]
ξ0(x⊗ 1) = 0, this implies that in the tensor product

(k[x] ⊗ k[v]/vp) ⊗k[x⊗1,1⊗x] k, x ⊗ 1 ⊗ 1 = 1 ⊗ 1 ⊗ 0 = 0 and 1 ⊗ v ⊗ 1 = 1 ⊗ 1 ⊗ 0 = 0.
Finally, since an element of IA0(ξ0) is of the form ∑n

i=0
∑p−1
j=0 ai,j(x⊗k 1)i(1⊗v)j⊗k[x⊗1,1⊗x]

1, applying the previous equalities we see that the only non zero term is a0,0. As a
consequence, the inertia group at ξ0 is trivial.
Consider now the point ξ : Spec(k̂[x]x)→ A1

k, where k̂[x]x is the completion of the local-
ization Bx corresponding to the morphism ξ] : k[x]→ k[[w]] sending x to w. The diagonal
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map Dξ : Spec(k[[w]]) → A1
k ×k A1

k corresponds to the morphism D]
ξ : k[x ⊗ 1, 1 ⊗ x] →

k[[w]] sending x⊗ 1 to w and 1⊗ x to w. We have D]
ξ(1⊗ x) = w, Gal]0(1⊗ x) = x⊗ 1,

D]
ξ(x ⊗ 1 − 1 ⊗ x) = w − w = 0 and Gal]0(x ⊗ 1 − 1 ⊗ x) = 1 ⊗ v̄. So, an element of

IA0(ξ) is of the form ∑
ai,j,h(x⊗ 1)i(1⊗ v̄)j ⊗wh which is equal to ∑ ai,0,h ⊗wh+i by the

previous equalities. Then, the inertia group Iαp(ξ) is trivial.

From now, k := Fp and k1 := k[β] for some β such that βp − β = 1.
Consider the point φ : Spec(k1) → A1

k corresponding to the morphism φ] : k[x] → k1

mapping x to β. The diagonal map Dφ : Spec(k1) → A1
k ×k A1

k corresponds then to
the morphism D]

φ : k[x ⊗ 1, 1 ⊗ x] → k1 mapping x ⊗ 1 to β and 1 ⊗ x to β. We
have D]

φ(1 ⊗ x) = β, Gal]0(1 ⊗ x) = x ⊗ 1, D]
φ(x ⊗ 1 − 1 ⊗ x) = β − β = 0 and

Gal]0(x⊗1−1⊗x) = 1⊗v. An element of IA0(φ) is of the form∑
ai,j,h(x⊗1)i(1⊗ v̄)j⊗βh,

thus by the previous equalities, we obtain ∑ ai,0,h ⊗ βh+i. So, IG(φ) is trivial.
By [Ser68, II §4 prop 5], any element of the completion at the localization at φ k̂[x]φ, can
be written uniquely as ∑∞n=0 snπ

n where π = xp−x−1, sn ∈ ⊗p−1
i=0x

ik (k = Fp). Consider
the point θ : Spec(k̂[x]φ)→ A1

k corresponding to θ] : k[x]→ k̂[x]φ sending x to π. Then,
D]
θ(x ⊗ 1) = π and D]

θ(x ⊗ 1 − 1 ⊗ x) = π − π = 0. Since an element of IA0(θ) is of the
form ∑

ai,j,l,h(x ⊗ 1)i(1 ⊗ v̄)j ⊗ xlπh, which is equal to ∑ ai,l,h ⊗ xl+iπh by the previous
equalities. And so, IG(θ) is trivial.

2. Action (A1
k, αp o µn).

Let k be an algebraically closed field of characteristic p > 0 and S = Spec(k) be the basis.
Take G := Spec(A) with A := k[u, v]/(un − 1, vp). So G = αp o µn ⊂ GL2,k and for any
k-algebra R,

G(R) :=
{( a b

0 1

)
, a, b ∈ R, an = 1, bp = 0

}
the multiplication on this group is given by the matrix multiplication.
So, the comultiplication ∆ : A → A ⊗k A is defined by mapping u to u ⊗ u and v

to u ⊗ v + v ⊗ 1. We consider an action of G on A1
k defined by the comodule map

ρk[x] : k[x] → k[x] ⊗k A sending x to x ⊗ ū + 1 ⊗ v̄ giving to k[x] its structure of A-
comodule. Then, the Galois map Gal : A1

k×kG→ A1
k×kA1

k corresponds to the morphism
Gal] : k[x ⊗ 1, 1 ⊗ x] → k[x] ⊗ k[u, v]/(un − 1, vp) sending 1 ⊗ x to x ⊗ ū + 1 ⊗ v̄ and
1 ⊗ x to x ⊗ 1. Moreover, we obtain that the ring of invariants is k[x]A ' k[xppcm(n,p)].
Denote by IA(t) the Hopf algebra corresponding to the inertia group IG(t) at a point t.
The action of the semi direct product G on A1

k induces actions.
One is the action (A1

k, αp) studied in Point 1.
An other induced action is the action (A1

k/αp, G/αp) where G/αp ' µn defined by the
comudule map ρ′′k[x] : k[xp]→ k[xp]⊗k k[u]/(un−1) sending to xp to xp⊗ ūp giving to k[xp]
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its structure of k[u]/(un − 1)-comodule, so that the Galois map Gal′ : A1
k/αp ×S µn →

A1
k/αp ×S A1

k/αp corresponding to the morphism Gal′] : k[xp ⊗ 1, 1 ⊗ xp] → k[xp] ⊗
k[u]/(un − 1) sending 1 ⊗ xp to xp ⊗ ūp and 1 ⊗ xp to xp ⊗ 1. We notice that if n = p,
this action (Spec(k[xp]), µp) is trivial thus, all the inertia groups are equals to µp and
k[x]A = (k[x]αp)µn = k[xp], otherwise k[x]A = (k[x]αp)µn = k[xnp].
We have also the action (A1

k, µn) defined by the comudule map ρ′′k[x] : k[x] → k[x] ⊗k
k[u]/(un− 1) sending to x to x⊗ ū giving to k[x] its structure of k[u]/(un− 1)-comodule,
so that the Galois map Gal′′ : A1

k ×S µn → A1
k ×S A1

k/αp corresponding to the morphism
Gal′′] : k[x⊗ 1, 1⊗ x]→ k[x]⊗ k[u]/(un − 1) sending 1⊗ x to x⊗ ū and 1⊗ x to x⊗ 1
and Bµn = k[xn] in particular k[x]µn ' k[x]αp , if n = p.
Let ξ0 : Spec(k) → A1

k be the k-point defined by the k-algebra morphism ξ] : k[x] → k

sending x to 0. The diagonal map Dξ0 : Spec(k) → A1
k ⊗k A1

k corresponds then to the
morphism D]

ξ0 : k[x⊗ 1, 1⊗ x]→ k which maps x⊗ 1 to 0 and 1⊗ x to 0. By definition,
the inertia group IG(ξ0) for the action (A1

k, G) at the point ξ0 is defined as the fiber
product (A1

k ×k G) ×A1
k
×kX Spec(k) = Spec((k[x] ⊗ k[u, v]/(un − 1, vp)) ⊗k[x⊗1,1⊗x] k).

We remark that Gal](x ⊗ 1) = x ⊗ 1, D]
ξ0(1 ⊗ x) = 0, D]

ξ0(x ⊗ 1) = 0, Gal](1 ⊗ x) =
x ⊗ u + 1 ⊗ v and D]

ξ0(x ⊗ u + 1 ⊗ v) = 0, this implies that in the tensor product
(k[x] ⊗ k[u, v]/(un − 1, vp)) ⊗k[x⊗1,1⊗x] k, x ⊗ 1 ⊗ 1 = 0 and 1 ⊗ v̄ ⊗ 1 = 0. Finally,
since an element of IA(ξ0) is of the form ∑p−1

l=0
∑n−1
j=0

∑
i≥0 ai,j,l ⊗ xi ⊗ uj v̄l, applying the

previous equalities we see that the only non zero terms are ∑p−1
l=0

∑n−1
j=0 a0,j,0 ⊗ 1 ⊗ ūj.

As a consequence, we prove that the inertia group at ξ0 for the action (A1
k, G) Using

computations as the previous ones, the inertia group Iαp(ξ0) for the action (A1
k, αp) at the

point ξ0 is trivial and the inertia group Iαp(ξ0) at the point ξ0 : Spec(k)→ A1
k → A1

k/αp
are isomorphic to µn over S.
Suppose that n is coprime to p. Let ξa : Spec(k) → A1

k be the k-point defined by the
k-algebra morphism ξ]a : k[x] → k sending x to a ∈ k×. The diagonal map Spec(k) →
A1
k ⊗k A1

k corresponds then to the morphism Dξa : k[x⊗ 1, 1⊗ x]→ k which maps x⊗ 1
to a and 1 ⊗ x to a. By definition, the inertia group IG(ξa) for the action (A1

k, G) at
the point ξa is defined as the fiber product (A1

k ×k G) ×A1
k
×kA1

k
Spec(k) = Spec((k[x] ⊗

k[u, v]/(un − 1, vp))⊗k[x⊗1,1⊗x] k). We remark that Gal](x⊗ 1) = x⊗ 1, D]
ξ0(1⊗ x) = a,

D]
ξ0(x⊗ 1) = a, Gal](1⊗ x) = x⊗ ū+ 1⊗ v̄ and Dξ0(x⊗ ū+ 1⊗ v̄) = a, this implies that

in the tensor product (k[x]⊗ k[u, v]/(un − 1, vp))⊗k[x⊗1,1⊗x] k, x⊗ 1⊗ 1 = 1⊗ 1⊗ a and
(x⊗ ū+ 1⊗ v̄)⊗ 1 = 1⊗ ū⊗ a+ 1⊗ v̄ ⊗ 1 = 1⊗ 1⊗ a so, 1⊗ ūp ⊗ ap = 1⊗ 1⊗ ap and
1⊗ ūp⊗ 1 = 1⊗ 1⊗ 1 but since (n, p) = 1, there exist l, h ∈ Z such that nl+ ph = 1 then
1⊗ ū⊗ 1 = 1⊗ 1⊗ 1 and 1⊗ 1⊗ v̄ = 0. Finally, since an element of IA(ξa) is of the form∑p−1
l=0

∑n−1
j=0

∑
i≥0 ai,j,l⊗xi⊗ ūj v̄l, applying the previous equalities we see that the only non

zero terms is a0,0,0. As a consequence, the inertia group at ξ0 for the action (A1
k, G) is

trivial. Using computations as before, we show that the inertia group at ξa for (A1
k, αp)

and the inertia group Iαp(ξa) at the point ξa : Spec(k)→ A1
k → A1

k/αp are trivial.
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5 Inertia group and orbit via the quotient stack
Suppose that G is flat. Consider an action (X,G) over S and the quotient stack [X/G] for

this action. We denote by p : X → [X/G] the quotient stack morphism.

Lemma V.8. Let f : T → X be a T -point of X. Set f := π ◦ f . Then, the automorphism
group AutT (f) of the T -point f corresponds to the inertia group IG(f) at the T -point f .

Proof. By Definition B.17,

AutT (f) ' ([X/G]×[X/G]×S [X/G],∆,∆ [X/G])×[X/G] T

' ([X/G]×[X/G]×S [X/G],∆,(p,p) (X ×S X))×X×SX,pr2,∆◦f T
' (X ×[X/G] X)×X×SX T
' (G×S X)×X×SX,(µX ,pr1),∆◦f T

' IG(f)

Remark V.9. Take f : Spec(k) → [X/G] a geometric point of [X/G]. From the surjectivity
of p : X → [X/G], we know that there is f0 : Spec(k)→ X such that f = f0 ◦ p. Thus, for any
such point above f , the automorphism group of f can be written as the inertia group of this
point. In particular, all the inertia groups at geometric points above f are isomorphic.

Lemma V.10. Suppose that G is finitely presented over S. Let f : T → X be a T -point of X.
Moreover, suppose that IG(f) is a flat group scheme over T .

1. We have a canonical isomorphism [GT/IG(f)] ' O(f).
2. We have a canonical isomorphism BT IG(f) ' [O(f)/GT ].
3. The orbit O(f) can be characterized as the fiber product

O(f) //

��

XT

��
BT IG(f) // [XT/GT ]

4. We have a canonical decomposition T � BT IG(f) ↪→ [XT/GT ]

Proof. 1. It is easy to prove that the Galois map (mGT , pr1) : GT × IG(f) → GT ×O(f) GT

is well defined and that it is an isomorphism. Thus, the map GT → O(f) is a G-torsor.
Applying Lemma IV.17, we obtain the isomorphism [GT/IG(f)] ' O(f).

2. Thanks to 1., applying Lemma IV.22 to [(GT/IG(f))/GT ], we get the isomorphism
BT IG(f) ' [O(f)/GT ].

3. The 2-cartesian diagram comes from the previous isomorphism combined with the fact
that the morphism O(f)→ XT is G-equivariant.
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4. The last decomposition results from the decomposition in G-equivariant morphisms

GT � O(f) ↪→ XT
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Part C

Ramification in arithmetic geometry
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Standing hypotheses

All along Part C, A denotes a flat commutative Hopf algebra (A,∆, ε, S) over R, G the
affine flat group scheme associated to A over S and X := Spec(B) an affine scheme over S.
We fix an action (X,G) over S. We denote by µX : X ×S G→ X its structural map.
We write C := BA for the ring of invariants for this action, Y := Spec(C) and π : X → Y for
the morphism induced by the inclusion C ⊂ B.
We write [X/G] for the quotient stack associated to this action, p : X → [X/G] for the quo-
tient stack morphism and ρ : [X/G]→ Y for the canonical morphism induced by the morphism
π : X → Y (see Lemma IV.29). Recall that I[X/G] stands for the inertia group stack (see
Definition B.17).
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Chapter VI

Different notions of tameness

1 Tame actions of an affine group scheme: definitions
and examples

We recall the notion of tameness for actions by affine group schemes defined by Chinburg,
Erez, Pappas and Taylor in the article [CEPT96, §2]. Our contributions in this section are §1.2
stating that tameness is preserved by induced actions and Lemma VI.4. All the other results
are taken from [CEPT96].

1.1 Definition
Definition VI.1. An action (X,G) = (SpecB, SpecA) is called tame if there is a A-comodule
map α ∈ ComA(A,B) which is unitary (that is, α(1A) = 1B). This map is called a total
integral.

1.2 Induced actions
The following proposition establishes the behavior of tameness for induced actions.

Proposition VI.2. We denote by H = Spec(A′) a flat affine closed subgroup of G. Suppose
that H acts on an affine scheme Z := Spec(D) over S. If the action (Z,H) is tame, then the
action (Z ×H G,G) of G on the balanced product is also tame.

Proof. Denote by αH : A′ → D the total integral for the action (Z,H). This naturally induces
a unitary A-comodule map αH ⊗ IdA : (A′ ⊗R A)A′ → (B ⊗R A)A′ . By lemma III.42, we have
an A-comodule isomorphism β : A ' (A′⊗RA)A′ . The composite αH ◦β is a total integral and
the action (Z ×H G,G) is tame.

1.3 Base changes
Tame actions are stable under base change.
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Lemma VI.3. If the action (X,G) is tame, then after an affine base change R′ → R the action
(XR′ , GR′) is also tame.

Proof. Since the action (X,G) is tame, there is a AC-comodule map A → B, which induces
naturally a comodule map AR′ → BR′ .

The next lemma will allow us to assume that the base is equal to the quotient, if the
structural map X → S has the same properties as the quotient morphism X → Y .

Lemma VI.4. The following assertions are equivalent:
1. The action (X, CG) over C is tame .
2. The action (X,G) over S is tame.
3. The action (CX, CG) over C is tame.

Proof. (1) ⇒ (2) Let α : CA → B be a total integral for the tame action (X, CG). Since B is
a CA-comodule via ρB : B → B ⊗R A ' B ⊗C CA, the composite α′ := α ◦ iA : A → B, where
iA : A → C ⊗R A maps a to 1 ⊗ a, is a unitary A-comodule map so a total integral for the
action (X,G).
(2)⇒ (3) Follows from base change, by Lemma VI.3.
(3) ⇒ (1) Denote by β : CA → CB the total integral for the action (CX, CG). Recall that
IdC ⊗RA is a CA-comodule via IdC ⊗∆ and CB is a CA-comodule map via IdC ⊗ ρB. Consider
the composite β′ := µC ◦ β : C ⊗R A → B where µC : C ⊗R B → B comes from the algebra
multiplication of B. For any b ∈ B and c ∈ C,

(µC ⊗ IdA)((IdC ⊗ ρB)(c⊗ b)) = (µC ⊗ IdA)(∑ c⊗ b(0) ⊗ b(1))
= ∑

cb(0) ⊗ b(1) = ρB(c)ρB(b) (since C = BA)
= ρB(µC(b⊗ c)) (since B is an A-comodule algebra).

Thus, µC is an AC-comodule map and β′ also being compositions of AC-comodule maps.

We take the opportunity to indicate without proofs some more results about the local nature
of tameness.

Proposition VI.5. (see [CEPT96, Proposition 2.11]) Suppose that X is finite over S and
G is finite and locally free over S. If R → R′ is a faithfully flat base change and the action
(XR′ , GR′) is tame, then (X,G) is also tame.

Corollary VI.6. (see [CEPT96, Proposition 2.15]) Suppose that X is finite over S and G is
finite and locally free over S.

1. The action (X,G) is tame if and only if for all prime ideals p of R the action (XRp , GRp)
over the local ring Rp is tame. The analogous statement obtained by replacing the local-
ization Rp by the strict local henselizations of R at p is also true.
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2. If {Spec(Ri)} is a cover of Spec(R) by affine open subschemes, then (X,G) is tame if
and only if all (XRi , GRi) are tame.

We have more generally the following result.

Proposition VI.7. (see [CEPT96, Corollary 2.19.]) For actions over Noetherian rings, tame-
ness descends from finite, faithfully flat extensions.

1.4 Cosemisimple Hopf algebras induce tame trivial actions

According to [CEPT96, 2.d.], the following result shows that the trivial action of a group
scheme associated to a cosemisimple Hopf algebra is tame (see Definition III.29).

Proposition VI.8. If A is cosemisimple Hopf algebra then the trivial action (Spec(R), G) is
tame.

Proof. Suppose that A is cosemisimple. Since R is an A-comodule, by lemma III.30 R admits
a complement H in A, which is an A-comodule. The projection α : A = H⊕R→ R is R-linear
and such that α(1A) = 1R. For a ∈ A, write a = (λ, h) where λ ∈ R and h ∈ H. Then

(α⊗ A) ◦∆A(a) = (α⊗ A)(∆A(λ),∆A(h)) = λ⊗ 1 = ρA ◦ α(a).

Therefore, α is a total integral and (Spec(R), G) is tame.

Lemma VI.9. If the trivial action (Spec(R), G) is tame, then any action by the group scheme
G is tame.

Proof. This follows from the inclusion ComA(A,R) ⊆ ComA(A,B).

As an immediate consequence, we obtain the following corollary.

Corollary VI.10. Any action by group schemes associated to cosemisimple Hopf algebras is
tame.

More precisely, tame trivial actions correspond exactly to the relatively cosemisimple Hopf
algebras.

Definition VI.11. We say that a Hopf algebra A is relatively cosemisimple if for all
M ∈MA the submodules which are direct summands in MR are also direct summands in MA.

Proposition VI.12. (see [BW03, 16.10]) The Hopf algebra A is relatively cosemisimple if and
only if the trivial action (Spec(R), G) is tame.
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2 Tame quotient stacks
In this section, suppose that the group scheme G and the scheme X are finitely presented

over S and that the inertia group stack I[X/G] is finite. By Theorem IV.28, this insures that
the quotient stack admits a coarse moduli space φ : [X/G]→M which is proper.

2.1 Definition
We first recall the definition of tame quotient stack introduced in [AOV08].

Definition VI.13. Under the previous hypotheses, we say that [X/G] is a tame quotient
stack if the functor φ∗ : Qcoh([X/G])→ Qcoh(M) is exact.

Remark VI.14. We denote by H a flat closed subgroup of G. Suppose that H acts on a scheme
Z over S. Directly from Proposition IV.19, we have that if the quotient stack [X/H] is tame,
then the quotient stack associated to the action of G on the balanced product [X ×H G/G] is
also tame.

2.2 Base change
The following lemma studies the local nature of tameness for quotient stacks.

Lemma VI.15. ([Alp08, Proposition 3.10]) For any morphism of S-schemes g : M ′ →M , we
consider the following 2-cartesian diagram:

[X/G]M ′
g′ //

φ′

��

[X/G]
φ

��
M ′

g
//M

Suppose that φ (resp. φ′) is the coarse moduli space for [X/G] (resp. [X/G]M ′).
1. If g is faithfully flat and the quotient stack [X/G]M ′ is tame then the quotient stack [X/G]

is tame.
2. If the quotient stack [X/G] is tame then the quotient stack [X/G]M ′ is also tame.

Proof. 1. From the 2-cartesian diagram we deduce that the functors g∗φ∗ and φ′∗g
′∗ are

isomorphic. Since g is flat, g′ is flat as well and g′∗ is exact; also φ′∗ is exact by assumption,
so the composite φ′∗g′∗ is exact, hence so is g∗φ∗. But, since g is faithfully flat, we have
that φ∗ is also exact as required.

2. First suppose that g is an open, quasi-compact immersion. Let 0→ F′1 → F′2 → F′3 → 0
be an exact sequence of O[X/G]M′ -modules. Set F3 := g′∗F2/g

′
∗F1. Then

0→ g′∗F
′
1 → g′∗F

′
2 → F3 → 0
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is exact. Moreover, g′∗F3 ' F′3 since the adjunction morphism g′∗g′∗ → id is an iso-
morphism. Since φ∗ is exact by assumption, φ∗g′∗F′2 → φ∗F3 is also surjective, but then
g∗φ

′
∗F
′
2 → φ∗F3 is surjective as well. Since g is an open immersion, φ′∗F′2 → g∗φ∗F3 is sur-

jective. Finally, since g∗φ∗ and φ′∗g′∗ are isomorphic functors, φ′∗F′2 → φ′∗F
′
3 is surjective.

We consider now any morphism of schemes g : M ′ → M . Since the tameness property
on a stack is Zariski local, we can assume M ′ and M affine. Then g′ is also affine, so
the functor g′∗ is exact. By assumption φ∗ is exact, therefore φ∗g′∗ = g∗φ

′
∗ is exact. But

the functor g∗ has the property that a sequence F1 → F2 → F3 is exact if and only if
g∗F1 → g∗F2 → g∗F3 is exact. It follows that φ′∗ is exact as required.
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Chapter VII

Tame actions by a constant group scheme as
generalization of the arithmetic case

In this chapter, we find the full study of the particular case of actions by constant group
schemes. Some of this study was began in [CEPT96]. This is important to understand how to
pass from an algebraic to a geometric context. In particular, Lemma VII.4 explains the usual
confusion, that is, the definition of inertia groups for action of group schemes we generalize
not the abstract decomposition group but really the abstract inertia group (See Chapter I).
Through this personal detailed proof, the reader will understand also the difficulty of defining
a decomposition group in this context.

In the following, B is a commutative R-algebra and Γ is an abstract finite group. We
consider an action (B,Γ) of Γ on B by automorphisms of R-algebras. We denote by BΓ :=
{b ∈ B|γ.b = b} the ring of invariants for this action.

1 Actions by a constant group scheme
Definition VII.1. Given Γ an abstract finite group, we can consider the R-algebra A :=
Map(Γ, R) of all the maps from Γ to R. This is a free R-algebra, a basis is given by the maps
fγ such that fγ(σ) = δγ,σ, for all γ, σ ∈ Γ. Notice that f 2

γ = fγ, fγfτ = 0 if τ 6= γ and∑
γ fγ = 1A. The R-algebra A is a Hopf algebra where
1. the comultiplication ∆ : A→ A⊗R A is defined by ∆(fρ) = ∑

ρ=στ (fσ ⊗ fτ );

2. the counity ε : A→ R is defined by ε(fσ) =
{

1 si σ = e

0 otherwise.

3. the coinverse S : A→ A is defined by S(fσ) = fσ−1.
The associated affine group scheme G over S is called the constant group scheme attached
to Γ.

The following lemma explains the terminology.

Lemma VII.2. Let Γ be an abstract finite group, G be the constant group scheme associated
to Γ over S and T a connected R-algebra. Then, for φ ∈ HomR-Alg(RΓ, T ), there is a unique
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γ0 ∈ Γ such that φ(fγ0) = 1 and φ(γ) = 0, for γ 6= γ0. This defines an isomorphism G(T ) ' Γ
sending φ to this unique γ0.

Proof. Given γ ∈ Γ, since f 2
γ = fγ, an R-morphism RΓ → T maps fγ to an idempotents of T ,

whose only indempotents are 0 and 1. So, since ∑γ∈Γ fγ = 1, there exists γ0 ∈ Γ such that fγ0

maps to 1. But, since fγfβ = 0 for γ 6= β in Γ, fγ maps to 0 whenever γ 6= γ0 ∈ Γ. Thus, the
morphism G(T )→ Γ which maps φ ∈ HomR-Alg(RΓ, T ) to this unique γ0 such that φ(fγ0) = 1
is an isomorphism.

The following lemma permits to see the action by constant group schemes attached to an
abstract group Γ on X as an action of Γ on B defined in Chapter I.

Lemma VII.3. Let G be the constant group scheme attached to Γ. An application ρB : B →
B⊗RA endowes B with a structure of A-comodule algebra if and only if the map r : Γ×B → B

given by ρB(b) = ∑
γ r(γ, b)⊗ fγ defines an action of Γ on B by automorphisms of R-algebras.

In other words, the data of an action of G on X is equivalent to the data of an action of Γ on
B. Moreover, the ring of invariants BA is equal to the ring of invariants BΓ.

Proof. 1. Since, for any b ∈ B, ρB(b) ∈ B ⊗R B, so, we can write it uniquely thanks to the
basis {fγ} as ρB(b) = ∑

γ r(γ, b)⊗ fγ. Then,

(IdB ⊗∆)(ρB(b)) = (IdB ⊗∆)(∑γ r(γ, b)⊗ fγ)
= ∑

γ r(γ, b)⊗∆(fγ) = ∑
γ

∑
γ=στ r(γ, b)⊗ fσ ⊗ fτ (1)

and,

(ρB ⊗ IdB)(ρB(b)) = (ρB ⊗ IdB)(∑β r(β, b)⊗ fβ)
= ∑

β ρB(r(β, b))⊗ fβ = ∑
β

∑
λ r(λ, r(β, b))⊗ fλ ⊗ fβ (2)

applying equalities (1) and (2) to (1⊗ g ⊗ g′), we obtain:

(IdB ⊗∆A) ◦ ρB = (ρB ⊗ IdB) ◦ ρB ⇔ ∀b ∈ B, g, g′ ∈ Γ, r(g, r(g′, b)) = r(gg′, b).

Moreover, by definition of the counity ε, we have:

(IdB ⊗ ε)(ρB(b)) = (IdB ⊗ ε)(
∑
γ

r(γ, b)⊗ fγ) =
∑
γ

r(γ, b)⊗ ε(fγ) = r(e, b)⊗ 1.

So,
(IdB ⊗ ε) ◦ ρB = IdB ⊗ 1⇔ ∀b ∈ B, r(b, e) = b.

2. For any b ∈ B, we have

b ∈ BA ⇔ ρB(b) = b⊗ 1A ⇔
∑
γ r(γ, b)⊗ fγ = b⊗∑γ fγ

⇔ ∑
γ r(γ, b)⊗ fγ = ∑

γ b⊗ fγ ⇔ r(γ, b) = b, ∀γ ∈ Γ.
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The direct direction of the last equivalence is obtained by applying the equality to 1⊗ γ.

2 Inertia groups for actions by a constant group scheme

Proposition VII.4. Let Γ be an abstract finite group, G be the associated constant group
scheme and p ∈ X. The inertia group IG(p) of G at p is the constant group scheme associated
to the abstract inertia group Γ0(p) at the prime ideal p for the action of Γ on B (cf. Lemma
VII.3).

Proof. In the following, we follow the notations of Definition VII.1. Write ζ : Spec(k(p))→ X

corresponding to the morphism ζ] : B → k(p). The inertia group at p is by Proposition V.2,
defined as the fiber product:

IG(p)
p2

��

p1 // G×S Spec(k(p))
µX◦(Id,ζ)
��

Spec(k(p))
(ζ,Id)◦∆// X ×S Spec(k(p))

Since IG(p) is a closed subgroup scheme of a constant group over the field k(p), so, it is also
constant. Thus, it is enough to prove that IG(p)(Spec(k(p)) = Γ0(p).
We consider the following diagram at the k(p)-points:

IG(p)(k(p))
p2

��

p1 // G×S Spec(k(p))(k(p))
µX◦(Id,ζ)
��

Spec(k(p))(k(p))
(ζ,Id)◦∆// X ×S Spec(k(p))(k(p))

Since G is the constant group scheme associated to Γ, Gk(p)(Spec(k(p)) ' Γ where the isomor-
phism is described in lemma VII.2. Moreover, Xk(p)(k(p)) = Homk(p)(B, k(p)). Recall that
the Galois morphism Λ : B ⊗R k(p) → RΓ ⊗R k(p) maps b ⊗ t ∈ B ⊗R k(p) to (t ⊗ 1).(ζ ⊗
IdA) ◦ ρB(b). And so the morphism G ×S Spec(k(p))(Spec(k(p)) → X ×S Spec(k(p))(k(p))
or equivalently, the morphism Homk(p)(k(p)Γ, k(p)) → Homk(p)(B ⊗R k(p), k(p)) corresponds
to the composition Λ ◦ −. By the description of the isomorphism Gk(p)(Spec(k(p)) ' Γ,
we obtain that the morphism θ : Γ → Homk(p)(B, k(p)) maps γ ∈ Γ to the k(p)-morphism
ζ](r(γ,−)) : B → k(p). Finally, we notice that Spec(k(p))(k(p)) = {Id} which implies that
the k(p)-morphism Spec(k(p))(k(p)) → X ×S Spec(k(p))(k(p)) or equivalently the morphism
{Idk(p)} → Homk(p)(B, k(p)) maps Idk(p) to ζ].
After making all these identifications, we obtain that the inertia group can be defined as the
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fiber product:
IG(p)(k(p))

p2

��

p1 // Γ
θ

��
{Idk(p)}

ζ]
// Homk(p)(B, k(p))

This proves the proposition, since here we have a description of the inertia group corresponding
to the action of Γ on B at the prime ideal p.

We obtain naturally the following corollary, giving a hint on how to generalize the notion
of tameness defined in I.18 to this context.

Corollary VII.5. Let Γ be an abstract finite group, G be the associated constant group scheme
and p ∈ X. The inertia group IG(p) of G at p is associated to a cosemisimple Hopf algebra if
and only if the order of the abstract inertia group at the prime ideal p for the action of Γ on B
Γ0(p) is prime to the characteristic of the residue field k(p).

Proof. This is a direct consequence of Maschke’s Theorem III.32.

3 Tame actions by a constant group scheme and trace
surjectivity

Recall that for an action of Γ on B by automorphisms, the tameness is characterized by the
surjectivity of the trace map (see Theorem I.32). We will see that this can be generalized for
the notion of tameness on actions by constant group schemes which explains the terminology.
Here, we suppose that G is a constant group scheme associated to Γ. Keeping the notations of
Lemma VII.3, define the trace map tΓ by:

tΓ : B → C

b 7→ ∑
γ′∈Γ r(γ′, b)

Indeed, for any b ∈ B and γ ∈ Γ, we have:

r(γ, tΓ(b)) = r(γ,∑γ′∈Γ r(γ′, b)) = ∑
γ′∈Γ r(γ, r(γ′, b)) = ∑

γ′∈Γ r(γ−1γ′, b) = tΓ(b).

So, tr(b) ∈ C.

Lemma VII.6. 1. The map tΓ is surjective if and only if there is b ∈ B such that tΓ(b) = 1C
2. A map α is an A-comodule map if and only if for any γ, σ ∈ Γ, α(fγσ−1) = r(σ, α(fγ)).
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Proof. 1. The direct sense is clear. Conversely, suppose that there is b ∈ B such that
tΓ(b) = 1C . Let c ∈ C. For any γ ∈ Γ, r(γ, c) = c (�). Thus,

c = c1C = ctΓ(b) = c
∑
γ′∈Γ r(γ′, b) = ∑

γ′∈Γ cr(γ′, b)
= ∑

γ′∈Γ r(γ, c)r(γ′, b) (by (�))
= ∑

γ′∈Γ r(γ′, bc) = tr(bc)

This means that tΓ is surjective.

2. α is an A-comodule map. That is, for any θ ∈ Γ,

ρ ◦ α(fθ) = (α⊗B)∆(fθ)
⇔ ρ(α(fθ)) = (α⊗B)(∑ab=θ fa ⊗ fb)
⇔ ∑

λ∈Γ r(λ, α(fθ))⊗ fλ = ∑
ab=θ α(fa)⊗ fb

As (fλ)λ∈Γ is a base for A, by identification, we obtain the equivalence that we want.

Lemma VII.7. The action (X,G) = (Spec(A), Spec(B)) is tame if and only if tΓ is surjective.

Proof. Suppose that the action (X,G) is tame, that is, there is α : A→ B a unitary A-comodule
map. Thus,

1B = α(1A) (because α is unitary)
= α(∑γ fγ) (since ∑γ∈Γ fγ = 1A)
= ∑

γ α(fγ) = ∑
γ γ
−1α(f1) (by the previous lemma)

= ∑
γ γα(f1)) = tr(α(f1))

Then, for b = α(f1), we have tΓ(b) = 1C and the result follows by Lemma VII.6. Conversely,
suppose there is b ∈ B such that tΓ(b) = 1C . Define α taking α(f1) := b. So that, by the
previous lemma, we put α(fγ) := γ−1b, for any γ ∈ Γ and this defines a total integral.

Example VII.8. Let B = Z[X]/(X2 + 1) and C2 =< g > be a cyclic group of order 2. Let G
be the constant group scheme associated to C2 over Z. Denote by x the class of X in B. The
action (X,G) is induced by the action (B,Γ) (cf. lemma VII.3)

Γ×B → B

(g, x) 7→ r(g, x) =
{
x if g trivial
−x if g non trivial.

We have BA = BΓ = Z (we can use that B is integral since X2 + 1 is irreducible over Z of
characteristic zero). We have that the trace map tC2 : B → Z is defined by mapping an element
α1 + α2x (where αi ∈ Z) to 2α1. So, 1Z has no antecedent by the trace map thus this action is
not tame.
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4 Slice theorem for actions by a constant group scheme
Let Γ be an abstract finite group. Suppose that G is the constant group scheme associated

to Γ over S.

Theorem VII.9. An action (X,G) over S admits slices at each closed point with étale slice
groups.

Proof. This theorem is a direct consequence of Theorem I.27 together with Proposition VII.4.
Indeed, take p ∈ Y and P ∈ X over p. Write Chs

p for the strict Henselization of C at p. In
Definition III.49, we can take Y ′ = Spec(C ′) as an étale subextension of Spec(Chs

p ) over Y
(since X → Y is finite) with C ′ a local ring, G0 the constant group scheme associated to Γ0(P)
over Y ′ and Z := Spec((B ⊗C C ′)m) where m is a prime ideal above the maximal ideal of the
local ring C ′ corresponding to p.
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Chapter VIII

Linearly reductive group schemes

In this chapter, the group scheme G is finitely presented over S. We recall interesting
properties of linearly reductive group schemes established in [AOV08, §2.3], adding some new
result (Theorem VIII.18), the most important being about lifting of linearly reductive groups
as subgroups. Also, we find Proposition VIII.14 about the structure of inertia groups for some
particular linearly reductive group schemes. We dedicate §3 to the study of the particular case of
diagonalizable group schemes, giving the structure of inertia groups for action of diagonalizable
groups.

1 Definition
Definition VIII.1. A group scheme G → S is called linearly reductive if the functor
QcohG(S)→ Qcoh(S) sending F to FG is exact.

Remark VIII.2. 1. If G → S is a finite, flat group scheme, then the coarse moduli space
of BSG is S. Thus, BSG is tame if and only if G is linearly reductive.

2. If G is linearly reductive, then the quotient stack [X/G] is tame. Every quotient stack
defined by an action of a linearly reductive group is tame.

Lemma VIII.3. (see [Alp08, Proposition 12.6]) If R = k is a field and G := Spec(A) is
finite over S, the group scheme G is linearly reductive if and only if the Hopf algebra A is
cosemisimple.

Remark VIII.4. Corollary VII.5 says that the tameness condition for extensions of rings can
be translated, for an action by a constant group scheme, as requiring that the inertia group
schemes at any topological point of X are linearly reductive.

2 Base changes
As a direct consequence of Lemma VI.15, we obtain the following proposition.

Proposition VIII.5. Let S ′ → S be a morphism of schemes. Then,
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1. If G→ S is linearly reductive, then GS′ → S ′ is linearly reductive.
2. If S ′ → S is faithfully flat and GS′ → S ′ is linearly reductive, then G → S is linearly

reductive.

3 Particular case: Diagonalizable group schemes

3.1 Actions by a diagonalizable group scheme
Definition VIII.6. Let M be an abelian group and A := R[M ] the group algebra of M
over R i.e. the free R-module such that the elements of M form a basis (the multiplication
map giving the structure of algebra on A is induced by the multiplication on M). The R-algebra
has a structure of Hopf algebra over R taking ∆(m) = m⊗m as comultiplication, ε(m) = 1 as
counitity and S(m) = m−1 as antipode, for any m ∈M . The corresponding group scheme G is
called a diagonalizable group scheme.

Lemma VIII.7. Let M be an abelian group. The datum of an action by a diagonalizable group
G = Spec(R[M ]) on X is equivalent to the datum of a graduation for the algebra B that means
B = ⊕m∈MBm and Bm′Bm ⊆ Bm+m′, for any m, m′ ∈ M . Moreover, B0 ' C is the ring of
invariants.

Proof. We have seen that the datum of this action is equivalent to the datum of a R-linear map
ρB : B → B ⊗R R[M ] = ⊕m∈MB ⊗R mR giving B a structure of A-comodule algebra which is
here equivalent to the data of R-linear maps of B on itself (ρm)m∈M defined uniquely (as M is
a basis of R[M ]) by setting for any b ∈ B,

ρB(b) =
∑
m∈M

ρm(b)⊗m.

Since B is an A-comodule, ∑m∈M ρm(b) ⊗ 1 = b ⊗ 1, for any b ∈ B. By identification (since
M is a basis of R[M ]), this is equivalent to have ∑m′, m∈M ρm(b) = b, for any b ∈ B. Then,
B = ⊕m∈MBm where Bm = ρm(B). Moreover, for any b, b′ ∈ B, ρB(bb′) = ρB(b)ρB(b′), thus∑
n∈N ρn(bb′) ⊗ n = ∑

m,m′∈M ρm(b)ρ′m(b) ⊗ (m + m′). Finally, we obtain by identification on
the basis, ρm+m′(bb′) = ρm(b)ρm′(b′), hence Bm′Bm ⊆ Bm+m′ , for any m and m′ ∈M .

Remark VIII.8. Since B0 = C, we have a natural projector p : B → C. This result will be
generalized for tame actions (see Lemma IX.1).

3.2 Inertia groups for actions by a diagonalizable group scheme
Proposition VIII.9. Let M be an abelian group, R[M ] be the group algebra over M and G
the diagonalizable group scheme over R. The inertia group of G at x ∈ X is the diagonalizable
group scheme over k(x) associated to the group algebra k(x)[M ′] for some M ′ quotient of M .
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Proof. Since the inertia group is a closed subgroup scheme of G×SSpec(k(x)) ' Spec(k(x)[M ])
over the field k(x), [SGA64, exposé IX , §8] proves the theorem.

3.3 Actions by a diagonalizable group scheme are always tame
Proposition VIII.10. Let M be an abelian group and G = Spec R[M ] be a diagonalizable
group scheme over R. Then, the action (X,G) is tame. In other words, the action by a
diagonalizable group scheme is always tame.

Proof. We define the total integral α by α(m) = 0B if m 6= 1M and α(1M) = 1B. For all
m 6= 1M ∈ M , (α ⊗ 1) ◦ ∆(m) = 0B ⊗ 1B = ρB ⊗ α(m) and for m = 1M , (α ⊗ 1) ◦ ∆(m) =
1B ⊗ 1M = ρB ⊗ α(m). Thus, (X,G) is tame.

4 Classification of linearly reductive group schemes
In this section, all groups schemes will be flat, finite and finitely presented over S. We

recall here without proof the classification of linearly reductive group schemes established in
[AOV08].

Definition VIII.11. 1. An étale finite group scheme H → S is called tame if its degree is
prime to all the residual characteristics.

2. A group scheme is called well split if it is isomorphic with a semi-direct product H n∆
where H is a tame constant group scheme and ∆ is diagonalizable.

Lemma VIII.12. [AOV08, Lemma 2.11] Let G be a locally well split group scheme over a
field k. Let ∆0 be the connected component of the identity and H = G/∆0.

1. The group scheme ∆0 is locally diagonalizable and H is an étale and tame group scheme.
2. There is a finite purely inseparable extension k′ of k, such that Gk′ is a semi-direct product

Hk′n∆0k′. In particular, if k is perfect, then G is the unique semi-direct product Hn∆0

corresponding to the connected étale sequence.
3. There is a finite extension k′ of k such that Gk′ is locally well split. In particular, if k is

algebraically closed, then G is well split.

The following theorem gives the structure of linearly reductive group schemes.

Theorem VIII.13. [AOV08, Theorem 2.16] Let G→ S be a finite flat group scheme of finite
presentation. The following conditions are equivalent.

1. G→ S is linearly reductive.
2. G→ S is locally well-split for the faithfully flat, quasi compact topology.
3. The fibers of G→ S are linearly reductive.

83



Chapter VIII. Linearly reductive group schemes

4. The geometric fibers of G→ S are well-split.
Furthermore, if S is noetherian these conditions are equivalent to either of the following two
conditions.

5. The closed fibers of G→ S are linearly reductive.
6. The geometric closed fibers of G→ S are well-split.

5 Inertia groups for an action of a finite flat linearly
reductive group scheme

Proposition VIII.14. Suppose that G is a finite flat linearly reductive group scheme over S.
Let x : Spec(Ω)→ X be an Ω-point where Ω is a perfect field. Write the well split group scheme
GΩ as a semi-direct product ∆ o Γ. The inertia group at x is IG(x) = I∆(x) o IΓ(x̄) where
I∆(x) is the inertia group of the induced action (X,∆) and IΓ(x̄) is the inertia group of the
induced action (X/∆,Γ), x̄ : Spec(Ω)→ X → X/∆.

Proof. This proposition is a consequence of Proposition V.6 and of the fact that the semi-direct
products correspond to the connected étale sequence over a perfect field (see Lemma VIII.12)
and that the sections defining these semi-direct products are given by the fact that the étale
component is isomorphic to Gred.

6 Cohomology for lineary reductive group schemes
As we will see, the cohomology of linearly reductive group schemes has some very inter-

esting cohomological vanishing properties that are useful for deformation involving such group
schemes.

Lemma VIII.15. Let k be a field, F be a coherent sheaf on BkG and L ∈ D
[0,1]
coh (OBkG). If

G→ Spec(k) is an fppf linearly reductive group scheme, then Exti(L,F) = 0, for i 6= −1, 0.

Proof. Since k is a field, any coherent sheaf on BkG is locally free, and therefore for any coherent
sheaf F on BkG, we have:

RHom(L,F) ∈ D[−1,0]
coh (OBkG)

Since the global section functor is exact on the category Coh(OBkG) (since G is linearly reduc-
tive), we obtain that

Exti(L,F) = 0, for i 6= −1, 0

Remark VIII.16. In particular, by Lemma B.30, the cotangent complex LBkG/k of the struc-
tural morphism BkG → k (where k is a field) belongs to D[−1,0]

coh (OBkG). If G → Spec(k) is an
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fppf linearly reductive group scheme and F is a coherent sheaf on BkG then Exti(LBkG/k,F) = 0,
for i 6= −1, 0. Moreover, if G is smooth, LBkG/k ∈ D

[0]
coh(OBkG) and Exti(LBkG/k,F) = 0 also

for i = 0.

7 Etale local liftings of linearly reductive group schemes
First, we just extend a linearly reductive group on a point to a linearly reductive group on

an étale neighborhood of the point.

Theorem VIII.17. ([AOV08, Proposition 2.18]) Let p ∈ S be a point, G be a linearly reductive
group over Spec(k(p)). Then there are an étale morphism U → S, a point q ∈ U mapping to p

and a flat linearly reductive group scheme Γ over U such that the pullback Γk(q) is isomorphic
to the pullback Gk(q).

Proof. Let k(p) be the algebraic closure of k(p). By [AOV08, proposition 2.10], Gk(p) is well
split. This means that it can be written as a semi direct product Hk(p) n ∆k(p) where Hk(p)
is étale, thus constant being finite and ∆k(p) is connected and diagonalizable. Up to passing
to a Zariski open neighborhood S ′ = Spec(Rp) of the point p in S, Gk(p) is the pullback of
Γ = H n∆→ S ′, where H is constant and also tame over S ′ and then ∆ is diagonalizable over
S ′.
The group G is a twisted form of the fiber Γp. So, we have to show that all twisted forms of Γp →
Spec(k(p)) can be extended to an étale neighborhood of p. By [Mil80, III §Twisted form], we
know that the twisted forms are classified by an element of the non-abelian cohomological group
H1
fppf (Spec(k(p)), Autk(p)(Γp)). Denote by c(G) the class representing G and ∆′ := ∆/∆H . By

Lemma A.14, Autk(p)(Γ)/∆′p is étale, but since all torsors over an étale group are locally trivial
for the étale topology then the image of c(G) in

H1
fppf (Spec(k(p)), Autk(p)(Γp)/∆′p) ' H1

ét(Spec(k(p)), Autk(p)(Γp)/∆′p)

is trivial after a finite separable extension k′ of k(p). Thus, denote by c′′(G) is the image of
c(G) in H1

fppf (Spec(k(q)), Autk(q)(Γp)), the image of c′′(G) is trivial in

H1
fppf (Spec(k(q)), Autk(q)(Γq)/∆′q).

Since the following sequence is exact

H1
fppf (k(q),∆′q)→ H1

fppf (k(q), Autk(q)(Γ))→ H1
fppf (k(q), Autk(q)(Γq)/∆′q)

c(G) comes from a class of H1
fppf (Spec(k(q)),∆′q). Since ∆′ is diagonalizable as a quotient of

a diagonalizable group scheme, by the structure of finite diagonalizable groups, it is enough to
prove that any element of H1

fppf (Spec(k(q)), µn) comes from H1
fppf (U, µn) where U is an étale
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neighborhood of S ′′.
By Kummer theory (see [Mil80, III §4 Kummer theory]), we know that all µn-torsors over k(q)
are of the form

Spec(k(q)[t]/(tn − a))→ Spec(k(q))

for some a ∈ k(p)∗. Up to taking an affine Zariski open Spec(D) of S ′′ containing q instead
of S ′′, we can assume that f ∈ D maps on a via the canonical morphism D → k(q). Take
then U = Spec(Df ) which is étale over S ′′ and such that f ∈ O∗U(U). But then, the µn-torsor
Spec(Df [t]/(tn− f))→ U becomes Spec(k(q)[t]/(tn− a))→ Spec(k(q)) after base change, and
this concludes the proof.

The previous lemma allows us to prove that linearly reductive groups can be extended as
subgroups fppf locally, in the following sense.

Theorem VIII.18. Let p be a point of S, G be a finite, flat group scheme over S and H0 be
a finite, flat, linearly reductive closed subgroup scheme of Gk(p) over Spec(k(p)). Then, there
exists a fppf morphism U → S with a point q ∈ U mapping to p and a flat linearly reductive
closed subgroup scheme H of GU over U whose pullback Hk(q) is isomorphic to the pullback of
H0k(q).

Proof. Let p ∈ S. By the previous theorem, there exists an étale morphism U → S with a point
q ∈ U mapping to p and a linearly reductive group scheme H over U such that Hk(q) ' H0k(q).
Set Un := Spec(R/qn+1). One has that H0 is a subgroup scheme of Gk(p), and this defines a
representable morphism of algebraic stacks x0 : Bk(q)H0 → Bk(q)Gk(q) over k(q). We want to
prove the existence a representable morphism of algebraic stacks x : BUH → BUGU filling in
the following 2-commutative diagram

Bk(q)H0 //

��

x

&&

BUH
x′

$$

��

Bk(q)Gk(q) //

g

��

BUGU

��
U0 // U

which is the deformation situation treated in Annexe C, Section 5. We can prove, thanks to
Grothendieck ’s Existence theorem for algebraic stacks B.31 and Artin’s approximation theorem
B.35, that the existence of such x only depends on the existence of a formal deformation, that
is morphisms xn : BUnHUn → BUnGUn filling in the following 2-commutative diagram:
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Bk(q)H0
in //

��

x1

&&

BUn−1HUn−1
//

��

xn−1

''

BUnHUn

xn

%%

��

Bk(q)Gk(q)
jn //

��

BUn−1GUn−1
//

��

BUnGUn

��
Spec(k(q)) // Un−1 // Un

By Theorem B.32, the obstruction to extend the morphism xn−1 to xn lies in

Ext1(Lx∗LBk(q)Gk(q)/k(q),m
n/mn+1 ⊗k(q) OBk(q)Gk(q))

which is trivial for any n ∈ N by Corollary VIII.15. It follows that there exists an arrow
xn filling the previous diagram. This leads to the existence of a representable morphism F :
BUHU → BUGU . Take Q→ U the GU -torsor which is the image via F of the trivial HU -torsor
HU → U . Furthermore, the functor F induces a homomorphism from AutS(HQ → Q) = HQ

to the automorphism group scheme of the image of the HQ-torsor HQ → Q in BQGQ. Since
this image is the pullback of Q to Q over BQGQ, which is canonically a trivial torsor, its
automorphism group is HQ. So, this defines a group morphism HQ → GQ, with Q→ U an fppf
morphism as GU -torsor. Since F is representable, by Lemma B.22, this morphism is injective.
Finally, since H is proper and G is separated, HV is closed in GV .
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Chapter IX

Main results under tameness conditions in a
more general context

1 Properties of tame actions by an affine group scheme

In this section, we start with proving the existence of a projector for tame actions which
insures the exactness of the functor of invariants. This property characterizes the tameness of
the quotient stack (see Theorem IX.8). We give also another characterization of the tameness
for actions by affine group schemes and exactness of the functor of invariants. We end the
section with Proposition IX.4 which will permit the connection between the two notions of
tameness.

1.1 Existence of projectors

In the general case, we can define a projector which plays the role of the trace map that we
can construct only for actions by constant group schemes.

Lemma IX.1. ( [Doi90, §1]) From a total integral map α : A → B and M ∈ BM
A, we can

define a R-linear projector called Reynold operator

prM : M → MA

m 7→ prM(m) := prM,α(m) = ∑
(m) α(S(m(1)))m(0).

Proof. For any m ∈M and a ∈ A, we have

ρM(α(a)) = (α⊗ A)∆(a) = (α⊗ A)(
∑

a1 ⊗ a2) =
∑

α(a1)⊗ a2.

Thus,
ρM(m.α(a)) =

∑
m(0)α(a1)⊗m(1)a2 (�).
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We obtain:

ρM(prM(m)) = ρM(∑m(0)α(S(m(1)))
= ∑(m(0))(0)α(S(m(1))1 ⊗ (m(0))1S(m(1))1) (by (�))
= ∑(m(0))(0)α(S((m(1))2)⊗ (m(0))1S((m(1))1) (since S is an antimorphism)
= ∑

m(0)α(S(m(3)))⊗m(1)S(m(2)) = ∑
m(0)α(S(m(2)))⊗ (m(1))1S(m(1))2

= ∑
m(0)S(m(2))⊗ ε(m(1))1 (by the definition of an antipode)

= ∑
m(0)S(m(1)ε(m(1)))⊗ 1 = ∑

m(0)S((m(1))1ε(m(1))1)⊗ 1
= ∑

m(0)S(m(1))⊗ 1(by the properties of the counity).
= prM(m)⊗ 1

So, prM(m) ∈ (M)A and prM
2 = prM . Moreover, for any m ∈ (M)A, ρM(m) = m ⊗ 1,

Hence, prM(m) = mα(s(1)) = mα(1) = m since α(1) = 1. This proves that prM is a Reynold
operator.

1.2 Exactness of the functor of invariants
The existence of a Reynold operator permits to prove that tame actions by affine group

schemes always induce the exactness of the functor of invariants.

Lemma IX.2. ([CEPT96, Lemma 2.3]) If the action (X,G) is tame then the functor of in-
variants (−)A : BMA → CM is exact.

Proof. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of BMA. We have the following
commutative diagram:

0

��
0 // (M1)A = prM1(M1) //

φ1|(M1)A

��

M1

prM1}}

φ1

��

//
ρM1

M1⊗1
//M1 ⊗ A

��
0 // (M2)A = prM2(M2) //

φ2|(M2)A

��

M2

prM2}}

φ2

��

//
ρM2

M2⊗1
//M2 ⊗ A

��
0 // (M3)A = prM3(M3) //M3

prM3}}

��

//
ρM3

M3⊗1
//M3 ⊗ A

0

Left exactness is automatic, right exactness follows from the previous diagram.

We have also a characterization of tameness of an action by the existence of a section for
the structural morphism ρB.
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Lemma IX.3. ([Doi90, §1]) The following assertions are equivalent:

1. The action (X,G) is tame.
2. There is an A-comodule map λB : B ⊗R A→ B such that λB ◦ ρB = IdB where B ⊗R A

is an A-comodule via (IdB ⊗∆).

Proof. (1) ⇒ (2) Let λB : B ⊗R A → B be the map sending φ to [b ⊗ a 7→ ∑
b(0)α(S(b(1))a)].

For any b⊗ a ∈ B ⊗R A,

(ρB ◦ λB)(b⊗ a) = ρB(∑ b(0)α(S(b(1))a))
= ∑(b(0))(0)α(S((b(1))2)a1)⊗ (b(0))(1)S((b(1))1)a2

= ∑(b(0))(0)α(S(b(1))a1)⊗ ((b(0))(1))2S(((b(0))(1))1)a2

= ∑
b(0)α(S(b(1))a1)⊗ a2

= ((λB ⊗ IdA) ◦ (IdB ⊗∆))(b⊗ a)

This means that λB is an A-comodule map. Moreover, for any b ∈ B,

λB ◦ ρB(b) = λB(∑ b(0) ⊗ b(1)) = ∑(b(0))(0)α(S((b(0))(1))b(1))
= ∑

b(0)α(S((b(1))1)(b(1))2) = ∑
b(0)α(ε(b(1))1A)

= (∑ ε(b(1))b(0))1B = b

Thus, λB ◦ ρB = IdB.
(2) ⇒ (1) We define α : A → B as the composite of two unitary A-comodule maps 1 ⊗ IdA :
A→ B ⊗R A and λB : B ⊗R A→ B.

The next proposition is one of our results which is essential for the following as it, compares
the exactness of the functor of invariants with the tameness of the action.

Proposition IX.4. Suppose that C is locally noetherian, that B is flat over C and that A is
finite, locally free over R. Then, the following assertions are equivalent:

(1) The action (X,G) is tame.
(2) The functor (−)A : BMA → CM, N 7→ (N)A is exact.
(1’) The action (X, CG) is tame.
(2’) The functor (−)CA : BMCA → CM, N 7→ (N)CA is exact.

Proof. (1)⇔ (1′) follows from lemma VI.4.
(2)⇔ (2′) is a consequence of lemma III.21.
(1)⇒ (2) follows from lemma IX.1
(2′) ⇒ (1′) Suppose that (−)A is exact. Since CA is finite over C (base change of A which is
finite over R) and B is finite over C (cf. Theorem III.39), B ⊗C CA is finite over C. Moreover,
as C is locally noetherian, B and B⊗RA are also of finite presentation as algebras over C (see
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Lemma A.3, 3.) so, in particular, as C-modules (see Lemma A.3, 4.). By lemma III.24 since
we suppose B flat over C, we have the following isomorphism

(B ⊗R B∗)CA ' Com
CA(B,B) and (B ⊗R (B ⊗R A)∗)CA ' Com

CA(B ⊗C CA,B)

Since (B ⊗ ε) is a C-linear section of ρB : B → B ⊗R A, (B ⊗C CA)∗ → B∗ is surjective. Thus,
from the exactness of (−)CA, we obtain the surjectivity of

(B ⊗R (B ⊗R A)∗)CA → (B ⊗R B∗)CA

Finally, the isomorphisms above imply the surjectivity of the natural map

Com
CA(B ⊗C CA,B)→ Com

CA(B,B)

This insures the existence of a CA-comodule map λB : B ⊗C CA → B such that λB ◦ ρB = B.
The previous lemma permits to conclude the proof.

2 Exactness of the functor of invariants and nature of
the quotient

2.1 The adjunction map defines an isomorphism for tame actions

For any C-module M , M ⊗C B is a right A-comodule via IdM ⊗ ρB and B-module via
(m ⊗ b)b′ = m ⊗ bb′, for any m ∈ M and b, b′ ∈ B. For M ∈ MC and N ∈ MA

B, the counit
map µN : NA ⊗C B → N sends n⊗ a to na and the unit map ηM : M → (M ⊗C B)A sends
m to m⊗ 1.

Lemma IX.5. ([Obe77, Section 4]) Suppose that the action (X,G) is tame. Then, for any
BA-module M , the unit map ηM : M → (M ⊗C B)A is an isomorphism.

Proof. Choose a free presentation of M

C(J) // CI //M // 0

The functor −⊗C B is right exact, so

C(J) ⊗C B // CI ⊗C B //M ⊗C B // 0

is again exact. Since (−)A is (right) exact, we get that

(C(J) ⊗C B)A // (CI ⊗C B)A // (M ⊗C B)A // 0
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is exact. Because (−)A is exact, it commutes with arbitrary direct sums and it preserves
cokernels. The same goes for the left adjoint of (−)A, which sends M to M ⊗C B, and hence
also for the adjunction homomorphism ηM . Note that ηC : C ' (C ⊗C B)A, and so, by the
above, ηC(J) and ηC(I) are isomorphisms. It follows that ηM is an isomorphism.

2.2 Nature of the quotient
If we suppose the exactness of the functor of invariants, the quotient has very nice properties.

Theorem IX.6. Suppose that the functor of invariants (−)A is exact. Then, the map π : X →
Y is a categorical quotient in the category of schemes. Moreover, the underlying topological
map π] is surjective and the image of any closed G-equivariant subscheme of X is closed. That
is, π] is submersive. Moreover, if X is noetherian, the map π : X → Y is a categorical quotient
in the category of algebraic spaces.

Proof. By the previous lemma and Lemma IX.2, for any ideal c of C, we have

C/c ' (C/c⊗C B)A ' (B/Bc)A ' C/(Bc)A ' C/Bc ∩ C

Thus, Bc ∩ C = c. Let p ∈ Spec(C). Since Cp ⊂ Bp and Bp ∩ C = p, m := ppBp 6= Bp is
contained in the maximal ideal of Bp. We have pCp ⊆ m ∩ Cp and we obtain by maximality,
pCp = m∩Cp. Set q = m∩B, so q∩C = (m∩B)∩C = m∩C = (m∩Cq)∩C = qCq ∩C = q

which shows the surjectivity of π].
Let W be a closed G-invariant subscheme of X. W has the form Spec(B/b), with b ∈ Spec(B)
G-invariant. By the exactness of the functor of invariants (Lemma IX.2), we have:

(B/b)A ' BA/bA ' C/b ∩ C

Thus, π(W ) = Spec(C/(b ∩ C)) is closed in Y .
By the previous lemma, for any ring morphism C → C ′, we have C ′ = (C ′⊗CB)A. This means
that the invariants commute with affine base change. To show that the quotient is universal
in the category of algebraic spaces, we have to prove that for any base change Y ′ → Y where
Y ′ is an algebraic space, XY ′ → Y ′ is a quotient. Considering a presentation Y ′1

//// Y ′2 of
Y ′ (see [sta05, Algebraic spaces, lemme 9.1]), it is enough to deal with the case where Y ′ is a
scheme. Finally, using [MFK94, Remark 6, p 8], we are reduced to the case where Y ′ is affine.
Consider a morphism of schemes ψ : X → Z such that µX ◦ψ = pr1 ◦ψ. We have to construct
a morphism χ : Y → Z such that ψ = χ ◦ π and show that it is unique. Consider an affine
covering {Zi} of Z. We want to find a covering {Yi} of Y such that π−1(Yi) ⊂ ψ−1(Zi) (�)
in order to define χi locally on the Y ′i s. Indeed, if we find such a covering {Yi}, since Zi is
supposed affine, it is enough to find a morphism hi : Γ(Zi,OZ)→ Γ(Yi,OY ). For this, consider

resi ◦ ψ∗ : Γ(Zi,OZ)→ Γ(ψ−1(Zi),OX)→ Γ(π−1(Yi),OX)
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where resi is the restriction map. Moreover, Γ(π−1(Yi),OX) = Γ(Yi, π∗(OX) = Γ(Yi,OY ). So,
for any i, we can take hi := resi ◦ ψ∗ which defines χi : Yi → Zi. Finally, since χi = χj on
Yi ∩ Yj we can glue and obtain ψ = χ ◦ π. The unicity of χ comes from the unicity of the χ′is
such that ψ = χi ◦ π.
So, we have to construct the covering {Yi} satisfying (�). We notice that for any family of
ideals {bi} of B which are A-subcomodules of B, we have (∑ bi)∩C = ∑(bi∩C) (The existence
of a projector prB : B → C (cf. Lemma IX.1) shows that if b = ∑

bi is in (∑ bi) ∩ C then
b = prB(b) = ∑

prB(bi) is also in
∑(bi∩C). The converse is clear.) Since π is closed on the closed

invariant subschemes, the previous equality can be written in geometric terms as π(∩Wi) =
∩iπ(Wi) (∗) for any family {Wi} of closed invariant subschemes. Set Xi := X\ψ−1(Zi) and
Yi := Y \π(Xi). As ψ is invariant on the orbits, Xi is closed and invariant so π is closed, hence
Yi is open. Thus, π−1(Yi) ⊂ ψ−1(Zi). Moreover, since {Zi} is a covering of Z, ∩iXi is empty
and by (∗), ∩iπ(Xi) is also empty. So, {Yi} is a covering of Y . The fact that π is a categorical
quotient in the category of algebraic spaces when X is noetherian is a consequence of [Alp08,
Theorem 6.6]. Indeed, since X is noetherian and X → [X/G] is faithfully flat quasi-compact
then [X/G] is noetherian.
Corollary IX.7. Suppose that X is noetherian, finitely presented over S, that G is finitely
presented over S and that the inertia group stack I[X/G] is finite. If the action (X,G) is tame,
the map ρ : [X/G]→ Y is a coarse moduli space of [X/G] and ρ is proper.
Proof. By the previous theorem, the quotient π : X → Y is categorical in the category of
algebraic spaces. By Theorem IV.28, this insures that the quotient stack admits a coarse
moduli space that we denote ρ : [X/G] → M such that ρ is proper. Via Lemma IV.30, since
ρ ◦ p : X → [X/G]→ M and π : X → Y are categorical quotients in the category of algebraic
spaces, we obtain that M ' Y and that ρ : [X/G]→ Y is a coarse moduli space.

3 Comparing the two notions of tameness
Using all the previous studies, we can finally compare the two notions of tameness.

3.1 Tame actions by an affine group scheme vs good moduli spaces
Theorem IX.8. Suppose that the functor ρ∗ : Qcoh([X/G])→ Qcoh(Y ) is well defined. Then,
the functor ρ∗ is exact if and only if the functor of invariants (−)A is exact.
Proof. The quotient map π : X → Y is such that π ◦ p1 = f ◦ µX . Lemma IV.29 insures the
existence of a map ρ making the diagram below commutative:

[X/G] ρ // Y

X

p

bb

π

??
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Thus, as all the morphisms of the diagram above are quasi-compact and quasi-separated, the
following diagram is well defined and commutes:

Qcoh([X/G]) ρ∗ // Qcoh(Y )

QcohG(X)
p∗

hh

π∗

88

By Proposition IV.24, the functor p∗ is an equivalence of categories. Moreover, by Proposition
A.8 and Proposition A.11, we have the following commutative diagram:

QcohG(X) π∗ //

Γ(X,_)
��

Qcoh(Y )

(B,A)-modules
(_)A

// BA-modules

_̃

OO

where Γ(X,_) and _̃ are equivalences of categories. This proves the lemma.

Proposition IX.9. Suppose that (X,G) is a tame action. Then, ρ : [X/G] → Y is a good
moduli space.

Proof. Since π : X → Y satisfies π ◦ p1 = π ◦ µX , Lemma IV.29 insures the existence of the
application ρ making the following diagram commute:

[X/G] ρ // Y

X

p

bb

π

??

Thus, we have ρ∗O[X/G] ' π∗(OX)G ' OY .
The map ρ∗ : Qcoh([X/G]) → Qcoh(Y ) is well defined, by Lemma IV.10. The proposition is
now a direct consequence of the previous lemma.

3.2 Comparing tameness notions for actions of a finite group scheme
Theorem IX.10. Suppose that G is finite and locally free over S. If the action (X,G) is tame
then the quotient stack [X/G] is tame. When C is locally noetherian and B flat over C, the
converse is true.

Proof. By Theorem III.39, we know that under the hypothesis of the proposition the map π :
X → Y is a geometric categorical quotient in the category of algebraic spaces, thus by Corollary
IV.30, ρ : [X/G] → Y is a coarse moduli space. Moreover, ρ∗ : Qcoh([X/G]) → Qcoh(Y ) is
exact by Proposition IX.4, thus [X/G] is tame. The converse follows from Proposition IX.4.
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Remark IX.11. We can replace the hypothesis Y noetherian by X of finite type over S if we
suppose the base S noetherian. In fact, by [Con05, Theorem 3.1, (2)], Y is of finite type over
S so also noetherian.

We obtain easily the following corollary which gives also an interesting correlation between
linearly reductive groups and cosemisimplicity thanks to Proposition VI.12.

Corollary IX.12. Suppose that S is noetherian and G is finite and flat over S. Then, G is
linearly reductive over S if and only if the trivial action (S,G) is tame over S.

We thought that it might be interesting to prove that the tameness can be characterized by
the existence of projectors.

Corollary IX.13. Suppose that G is finite, locally free over S, C is locally noetherian and B
flat over C. The following assertions are equivalent:

1. The action (X,G) is tame.

2. The quotient stack [X/G] is tame.

3. There is a Reynold operator prM : M →MA for any M ∈ BM
A.

Proof. 1.⇔ 2. Follows from the previous theorem.
1.⇒ 3. follows from Lemma IX.1.
3. ⇒ 2. As the functor (−)A is left exact, it is enough to prove exactness on the right. So, let
ξ : M → N ∈ BBim

A(M,N) be an epimorphism. It induces a morphism ξA : MA → NA. For
n ∈ NA, by the surjectivity of ξ, there ism ∈M such that ξ(m) = n. Moreover, prM(m) ∈MA,
so ξ(prM(m)) = prN(ξ(m)) = n. Therefore ξ is surjective.

Remark IX.14. By the previous lemma, we characterize tameness by the existence of projectors
which can be an analogue of the trace surjectivity that we have proved in the constant case.

3.3 Comparing tameness notions for actions with finite inertia groups

Theorem IX.15. Suppose that X is noetherian, finitely presented over S, that G is finitely
presented over S and and that the inertia group stack I[X/G] is finite. If the action (X,G) is
tame then the quotient stack [X/G] is tame.

Proof. This follows from Proposition IX.9 together with Corollary IX.7.
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IX.4 Free actions

4 Free actions

4.1 Tameness and freeness

Theorem IX.16. The following assertions are equivalent:
1. The functors B⊗C − and (−)A form a pair of equivalences inverse of each other between

the category MC and the category BM
A.

2. The Y -scheme X is a G-torsor over Y for the fppf topology.
3. The map X → Y is a categorical quotient for the action (X,G) and the functor ρ∗ :

Qcoh[X/G]→ Qcoh(Y ) is an equivalence of categories.
Moreover, requiring that the action (X,G) is tame and free implies all the previous assertions.
In particular, if we suppose G finite and flat over S, all the previous assertions are equivalent
to requiring that the action (X,G) is free.

Proof. 1.⇒ 2. ConsiderM →M ′ an injective map of right C-modules. Since the categoriesMC

and BM
A are equivalent via the functor B⊗C−, then B⊗CM → B⊗CM ′ is a monomorphism

in BM
A, in particular injective. So, B is flat over C. The faithful flatness is obtained similarly.

Let 0→M →M ′ →M ′′ → 0 be a short sequence such that

0→ B ⊗C M → B ⊗C M ′ → B ⊗C M”→ 0

is exact in MB. As the modules of the exact sequence are in BM
A, the exact sequence remains

exact after applying the functor (−)A (it is an equivalence of category) and the initial sequence
is exact. Consider B⊗RA ∈ BM

A which is a right A-comodule via IdB⊗∆ and a left B-module
via (b⊗ a) ∗ b′ = (b⊗ a)ρB(b′), for any b⊗ a ∈ B ⊗R A and b′ ∈ B. The counit map applied to
B ⊗R A and defined by

µB⊗RA : (B ⊗R A)A ⊗C B → B ⊗R A
(b⊗ a)⊗ b′ 7→ (b⊗ a).b′

is then an isomorphim. Via the canonical isomorphism B ' (B ⊗R A)A, we obtain the Galois
map defined by:

Gal : B ⊗C B → B ⊗R A
b⊗ b′ 7→ (b⊗ 1)ρB(b′)

1.⇔ 3. Using the same arguments as in the proof of Theorem IX.8, we can show that requiring
the functor ρ∗ to be an equivalence of categories is equivalent to requiring that the functor (−)A
is an equivalence of categories.
2.⇒ 3. As Y is a torsor, by Lemma IV.17, [X/G] ' Y and the result follows immediately. In
order to show that requiring that the action (X,G) is tame and free implies all the previous
assertions, we can refer to [Doi90, Theorem 3]. Finally, if we suppose G finite, flat over S,
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Theorem III.48 shows that all the previous assertions are equivalent to requiring that the
action (X,G) is free.

4.2 Slices theorem for free actions
Lemma IX.17. Suppose that S := Y is local, with maximal ideal q. The following assertions
are equivalent:

1. (X,G) is a free action.
2. IG(p) is trivial for some p over q

Proof. The direct implication follows from the definition. Let us prove 2.⇒ 1.. Let f : X → S

be the quotient morphism: since G is finite, f is finite. Set S0 := Spec(R/q) and X0 :=
f−1(q) = {p1, .., pr} = X ×S S0 where for any i ∈ 1, ..., r, pi are the primes above q. Since the
inertia is trivial at some prime over q, it is trivial at any prime over q since all the prime ideals
over q are conjugate. The action (XS0 , GS0) is free, this mean thats X0 ×S0 GS0 → X0 ×S0 X0

is a closed immersion (see [DG70, III, §2, n°2, Proposition 2.2]). In other words, we have the
surjection (B ⊗R B) ⊗R R/q → (B ⊗R A) ⊗R R/q. But, since B ⊗R B and B ⊗R A are finite
R-algebras, by Nakayama lemma, B⊗RB → B⊗RA is a surjection hence the action is free.

From this lemma, we can deduce easily the following proposition which is a fppf slice theorem
for free action, more precisely , freeness is local for the étale topology:

Theorem IX.18. Suppose that G is finite, flat over S. Let x ∈ X and y ∈ Y its image via
the morphism π : X → Y . The following assertions are equivalent:

1. The inertia group scheme is trivial at x.
2. There is an fppf morphism Y ′ → Y containing y in its image such that the action (X ×Y

Y ′, GY ′) is free. Thus, X ×Y Y ′ is a GY ′-torsor over Y ′.
3. There is an fppf morphism Y ′′ → Y containing y in its image and Z a scheme over Y ′′

such that the action (X ×Y Y ′′, GY ′′) is induced by the action (Z, e) where e denote the
trivial group scheme.

Proof. 1.⇔ 2. Follows from the previous lemma.
2. ⇒ 3. By Theorem III.48, X ×Y Y ′ is a GY ′-torsor over Y ′ hence locally trivial for the fppf
topology.
3. ⇒ 1. It follows from 3. that after a fppf base change the inertia group scheme is trivial,
hence it is also trivial itself.

As a global version of the previous result, we have the following theorem.

Theorem IX.19. ([DG70, III, §2, n° 2, 2.1] Suppose that G is finite over S. The following
assertions are equivalent:
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1. (X,G) is an action with trivial inertia at any x ∈ X.

2. The action (X,G) is free.

3. X is a G-torsor over Y .

5 Existence of slices for tame quotient stacks

In this section, we suppose that X is noetherian, finitely presented over S, that G is finitely
presented over S and that the inertia group stack I[X/G] is finite.

5.1 "Weak" slice theorem for tame quotient stacks

We can now characterize the tameness of the quotient stack via the structure of the inertia
group schemes and give locally the structure of a tame quotient stack which can be seen as a
"weak variant" of a slice theorem.

Theorem IX.20. [AOV08, Theorem 3.2] The following assertions are equivalent:

1. The quotient stack [X/G] is tame.

2. The inertia groups IG(ξ)→ Spec(k) are linearly reductive groups, for any ξ : Spec(k)→
X, where k is a field.

3. The inertia groups IG(ξ)→ Spec(k) are linearly reductive groups, for any geometric point
ξ : Spec(k)→ X, where k is an algebraically closed field.

4. For any point x ∈ X, there exist an fppf cover Y ′ → Y containing x in its image, a
linearly reductive group scheme H → Y ′, such that Hk(x) ' IG(x), acting on a finite and
finitely presented scheme P → Y ′ and an isomorphism of algebraic stacks over Y ′

[X/G]×Y Y ′ ' [P/H].

Proof. 1. ⇒ 2. Let ξ : Spec(k) → X be a k-point where k is a field, and IG(ξ) is the inertia
group in ξ. The quotient stack [Gk/IG(ξ)] is a scheme, denote it Gk/IG(ξ). Since the square

Gk/IG(ξ)

��

// X ×S Spec(k)

��
BkIG(ξ) // [X/G]×S Spec(k)

is 2-cartesian, BkIG(ξ)→ [X/G]×S Spec(k) is affine since Gk/IG(ξ)→ X ×S Spec(k) is affine.
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Now, let us consider the following commutative diagram:

BkIG(ξ)
(−)IG(ξ)

��

g // [X/G]
ρ

��
Spec(k)

f
// Y

(IX.1)

Since we have seen that g is affine, g∗ : Qcoh(BkIG(ξ))→ Qcoh([X/G]) is an exact functor and
ρ∗ : Qcoh([X/G])→ Qcoh(Y ) is exact by definition of tameness. Since f∗ρ′∗ = ρ∗g∗, if

0→ V1 → V2 → V3 → 0

is an exact sequence ofG-representations, considered as exact sequence of quasi coherent sheaves
over BkIG(ξ), we have the following exact sequence:

0→ f∗(V1)IG(ξ) → f∗(V2)IG(ξ) → f∗(V3)IG(ξ) → 0

Moreover (−)IG(ξ) is left exact and this implies that

0→ (V1)IG(ξ) → (V2)IG(ξ) → (V3)IG(ξ) → 0

is exact. So, IG(ξ) is linearly reductive.
2.⇒ 3. Immediate.
3. ⇒ 2. Let ξ : Spec(k) → X be a k-point where k is a field. By Theorem VIII.13, in order
to prove that a group scheme is linearly reductive, it is enough to prove that all the geometric
fibers are linearly reductive. Moreover, by Proposition V.2, for any x̄ : Spec(k̄) → Spec(k)
where k̄ is an algebraically closed field, we have (IG(ξ))x̄ = IG(ξ ◦ x̄) where ξ ◦ x̄ : Spec(k̄)→ X

is a geometric point of X. So, (IG(ξ))x̄ is linearly reductive hence the inertia group IG(ζ) as
well.
2. ⇒ 4. Set Y := [X/G]. Let p ∈ X. Write k := k(p) for the residue field at p. Without
loss of generality, one can assume that Y is the base. Following Lemma VIII.17, after passing
to an fppf cover of Y , we may also assume that IG(p) extends to a linearly reductive group
scheme H over Y . By standard limit argument, after an étale base change, we may assume
that Y is the spectrum of a local Henselian ring R with residue field k and maximal ideal p. Set
Yn := Spec(R/pn+1). We have that BkIG(p) is a closed substack of Y (we can see this thanks
to the commutative diagram (IX.1) remembering that the maps (−)IG(ξ) and ρ are proper).
Denote by x0 : BkIG(p)→ Y this closed immersion, by I ⊂ OY the sheaf of ideals defining this
closed substack and by Yn the closed substack of Y defined by the sheaf of ideals In+1. Our
goal is to find a Y -scheme P such that P is an H-torsor over [X/G] which is equivalent to find
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IX.5 Existence of slices for tame quotient stacks

a representable morphism x : Y→ BYH filling in the following commutative diagram:

BkIG(p) i //

��

x0

%%

Y
x

}}

��

BYH

g

��
Y

Indeed, this morphism defines the H-torsor required as the fiber product:

P //

��

Y

��
Y x

// BYH

– Formal deformation of x0: We want to find a formal deformation datum of x0 via the
sheaf of ideals I, i.e. morphisms xn filling in the following commutative diagram:

BkIG(p) //

x0 ((

Yn−1

xn−1
��

// Yn

xn
ww

BYH

g

��
Y

Applying Theorem B.32 and using the cartesian diagram:

BkIG(p)

��

// BYH

��
Spec(k(p)) // Y

we know that the obstruction to extend xn−1 to xn lies in Ext1(Lx∗0LBYH , In/In+1) which
is trivial for any n ∈ N by Corollary VIII.15 and this shows the existence of a formal
deformation.

– Algebraization of the formal deformation Since Y0 → Y0 is a coarse moduli space,
|Y0(Ω)| ' Y0(Ω) where |Y0(Ω)| is the equivalence class of the geometric points of Y0
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with values in an algebraically closed field Ω. This implies that the systems of ideals
{In} and {pnOY} are cofinal, i.e. there is an index jn such that there is a morphism
αn : [X/G]×S Yn → Yjn .
Considering the composition x′n = xin ◦ αn : [X/G] ×S Yn → BYH we get a formal
deformation, for our problem. Now, one can apply Artin approximation theorem B.35
and get the morphism x : Y → BYG that induces the closed immersion x0. This defines
the required H-torsor P → [X/G].

4.⇒ 1. Follows from Lemma VI.15, 1.

Remark IX.21. 1. This theorem shows that the action (A1
k, αp) and the action (A1

k, G), for
n coprime to p of Chapter V, §4 are tame since all the inertia groups at the geometric
point are linearly reductive.

2. In order to have really a slice theorem, it would be enough to have an G-equivariant
morphism between X after a fppf base change and (P ×S G)/H. It seems difficult to do
it by using for example deformation theory.

We obtain the following corollary.

Corollary IX.22. The stack [X/G]→ S is tame if and only if for any morphism Spec(k)→ S,
where k is an algebraically closed field, the geometric fiber [X/G]×SSpec(k)→ Spec(k) is tame.

5.2 Slice theorem for tame quotient stacks defined by actions of
finite commutative group schemes

We state now an interesting consequence of the previous theorem which permits to define
a torsor for a tame quotient stack for actions of finite commutative group schemes.

Proposition IX.23. Suppose that G is commutative over S. If the quotient stack [X/G] is
tame, then for any point x ∈ X, denoting by y ∈ Y its image by the quotient morphism
π : X → Y , there exist an fppf morphism Y ′ → Y containing y in its image and a subgroup
H of GY ′ over Y ′ lifting the inertia group at x such that the action ((X ×Y Y ′)/H, GY ′/H) is
free. If we suppose moreover that G is finite, (X ×Y Y ′)/H is a torsor over Y ′.

Proof. By the previous proposition, we know that the inertia at x is linearly reductive. So,
by Lemma VIII.18, there are an fppf cover Y ′ → Y containing y in its image and a linearly
reductive group H → Y ′ lifting this inertia group as a subgroup of GY ′ . Moreover, by Lemma
V.7, the inertia group at x̄, image of x by the quotient morphism (X ×Y Y ′)→ (X ×Y Y ′)/H
for the action ((X ×Y Y ′)/H,GY ′/H), is equal to

IGY ′/H(p) = IG(p)/(IG(p) ∩Hk(p) = {e}

By Theorem IX.19, up to passing to an fppf extension of Y ′, the action ((X×Y Y ′)/H,GY ′/H)
is free.
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Remark IX.24. We cannot establish the previous proposition in general if G is not commuta-
tive. Indeed, in this case G/H is not necessarily a group scheme and we cannot even define the
notion of action or of torsor. But, if the lifting H is a normal subgroup of G, we can establish
the same result.

We manage to prove a slice theorem for actions of a finite commutative group scheme, using
the following lemma.

Lemma IX.25. [CEPT96, Proposition 6.5] Let H be a subgroup of G such that the quotient
for the natural translation action exists and is universal. Let ψ : X → G/H be a morphism of
schemes preserving the G-actions. Let

Z = X ×G/H e

be defined as the fibered product of the two maps ψ and the inclusion e = H/H → G/H.
Assume that the balanced product Z ×H G exists and is a universal quotient. Then we have an
isomorphism of G-actions

(X,G) ' (Z ×H G,G).

Proof. Let us begin by constructing a map Z ×H G → X. Consider the composition of the
projection maps Z ×S G → Z and Z → X. This is an H-invariant morphism, and hence by
the universal property of the quotient, there is a map f : Z ×H G → X through which the
above composition factors. We will show that this map is an isomorphism of sheaves for the
fppf-topology. In fact, we will show that the underlying morphism of functors is an isomorphism
(so this is a proof by "reduction au cas ensembliste", see [DG70, III, Section 1, N°2]). From
Lemma III.43, Z ×H G is the sheaf associated to the functor which, on an R-algebra T , takes
the value

(Z ×S G)(T )/H(T ).

Let X0 be the functor which, on the R-algebra T , takes the value

X0(T ) = X(T )×(G/H)(T ) G(T )/H(T )

Since passing to associated sheaves commutes with taking fibered products, we see that the
sheaf associated to X0 is X. We now show that the map analogous to f gives a bijection

(Z ×S G)(T )/H(T ) ' X0(T )

Let Z0(T ) = X0(T ) ×G(T )/H(T ) e(T ). Then, for the action of H(T ) on Z0(T ) × G(T ) given by
(z, g)h = (zh, h−1g), we have the bijection

(Z0(T )×G(T ))/H(T ) ' X0(T ).
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Indeed, let Γ be an abstract group, and let ∆ ⊂ Γ be a subgroup. Suppose E is a Γ-set with a
Γ-equivariant map φ : E → Γ/∆. Then, the map φ is surjective, so E is the disjoint union of
the fibers of φ. If F = φ−1(∆/∆) = E ×Γ/∆ e, then a computation shows that E = F ×∆ Γ.
Now by definition Z0(T )×G(T ) = Z(T )×G(T ), so the lemma follows.

Remark IX.26. If there is a subgroup H of G such that (X/H,G/H) defines a torsor over Y ,
then X/H ×Y X/H ' X/H ×Y G/H. This gives us a G-equivariant morphism ψ : X → G/H

after the fppf base change X/H → Y . So up to making a fppf base change, by the previous
lemma, (X,G) is induced by the action (Z,H) defined in the previous proof.

As direct consequence of this remark, Theorem IX.20 and Proposition IX.23, we have the
following slice theorem which extends [CEPT96, Theorem 6.4]:

Theorem IX.27. Suppose that G is commutative and finite over S. The quotient stack [X/G]
is tame if and only if the action (X,G) admits fppf slices such that the slice group at x ∈ X
are linearly reductive.
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Appendix A

Reminder about schemes

1 Finiteness
We can obtain easily by induction the following result :

Lemma A.1. ( [Bou81, Chap V, n° 1, Proposition 4]) Let B be an R-algebra and (bi)1≥i≥n be
a finite family of elements of B. If for any i ∈ {1, ..., n}, bi is integral over R[b1, ..., bi−1] (in
particular, if any bi is integral over R) then the sub-algebra R[b1, ..., bn] of B is an R-module of
finite type.

We can also prove the following lemma :

Lemma A.2. ( [Bou81, Chap V, n° 9, Lemma 5]) Let R be a noetherian ring, B an R-algebra
of finite type, C an R-subalgebra of B such that B is integral over C. Then C is an R-algebra
of finite type.

Moreover, we have the following properties in algebro-geometric terms :

Lemma A.3. (cf. [Gro64, §1 particularly §1.6, §1.7...])
1. A group scheme is finite and locally free over S if and only if it is flat, finite and of finite

presentation over S.
2. If S is noetherian then the group scheme is finite and flat over S if and only if it is finite

and locally free over S.
3. If S is locally noetherian, a scheme is of finite presentation over S if and only if it is of

finite type over S.
4. If B is a finite algebra over R, then B is an R-algebra of finite presentation if and only

if B is an R-module of finite presentation.

2 Scheme-theoretic image
Definition A.4. If f : Y → X is any morphism of schemes, the scheme-theoretic image
of f is the unique closed subscheme i : Z → X which satisfies the following universal property:
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1. f factors through i,
2. if j : Z ′ → X is any closed subscheme of X such that f factors through j, then i also

factors through j.

Remark A.5. This notion is different from that of the usual set-theoretic image of f , f(Y ).
For example, the underlying space of Z always contains (but is not necessarily equal to) the
Zariski closure of f(Y ) in X, so if Y is any open (and not closed) subscheme of X and f

is the inclusion map, Z is different from f(Y ). When Y is reduced, Z is the Zariski closure
of f(Y ) endowed with the structure of reduced closed subscheme. But in general, unless f is
quasi-compact, the construction of Z is not local on X.

3 Quasi-coherent sheaves over a scheme
In this section, we find very classical results around the notion of quasi-coherent scheme.

The reader can refer to [Har77, §5] for more details.

Definition A.6. Let B be a ring and letM be a B-module. We define the sheaf associated toM
over Spec(B), denote by M̃ , as follows. For any prime ideal p ⊂ B, let Mp be the localization
of M at p. For any open set U ⊂ Spec(B), we define the group M̃(U) as the set of functions
s : U → ⊔

p∈U Mp such that for each p ∈ U , s(p) ∈ Mp, and such that s is locally of the form
m/f with m ∈ M and f ∈ B. More precisely, for any p ∈ U , there are a neighborhood V of
p ∈ U and elements m ∈ M and f ∈ B, such that for each q ∈ V , f /∈ q and s(q) = m/f in
Mq. M̃ is a sheaf via the natural restriction maps.

Proposition A.7. Let B be a ring, M be a B-module and M̃ be a sheaf over X := Spec(B)
associated to M . Then:

1. M̃ is an B-module;
2. For any p ∈ X, the stalk (M̃)p of the sheaf M̃ at p is isomorphic to the localization Mp;
3. For any f ∈ B, the Bf -module M̃(D(f)) is isomorphic to the localization Mf ;
4. In particular, Γ(X, M̃) = M .

Proposition A.8. Let A be a ring, X = Spec(A) and let A → B be a ring homomorphism
inducing the morphism f : Spec B → Spec A. Then:

1. The map M → M̃ defines an exact faithful flat functor from the category of A-modules
to the category of OX-modules;

2. If M and N are two A-modules, then (M ×A N )̃ ' M̃ ×OX Ñ ;
3. If {Mi} is a family of A-modules, then (⊕Mi)̃ ' ⊕M̃i;
4. For any B-module N , f∗(Ñ) ' (AN )̃, where AN means that N is seen as A-module;
5. For any A-module M , f ∗(M̃) ' (M ⊗A B)̃
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4 Group schemes

Definition A.9. Let (X,OX) be a scheme. A sheaf of OX-modules F is quasi-coherent if there
is a covering of X by affine, open subspaces Ui = Spec(Ai), such that for any i there is an
Ai-module Mi with F|Ui ' M̃i. Denote by Qcoh(X) the set of quasi-coherent OX-modules.

Example A.10. For any scheme X, the structural sheaf OX is quasi-coherent.

Proposition A.11. Let B be a ring and X := Spec(B). The functor M 7→ M̃ defines an
equivalence of categories between the category of B-modules and the category of quasi-coherent
OX-modules. Its inverse functor is F 7→ Γ(X,F). In particular, if G = Spec(A) is a group
scheme and (X,G) is an action, we obtain an equivalence between the (B,A)-modules and
the quasi-coherent G-equivariant OX-modules. Denote by QcohG(X) the set of G-equivariant
quasi-coherent modules.

Proposition A.12. Let f : X → Y be a quasi-compact and quasi-separated morphism of
schemes. If F ∈ Qcoh(X), then f∗F ∈ Qcoh(Y ).

4 Group schemes

4.1 Cohomology
Lemma A.13. ([AOV08, §2.3]) Consider 1→ A→ E → G→ 1 an extension of groups, with
A an abelian group. If H1(G,A) = 0, the unique automorphism of E which induces the identity
on A and G is obtained by conjugation by an element of A.

Proof. Consider the induced action of G on A by conjugation. The conjugation by an element
of A gives an automorphism of E, which induces the identity on A and G. Let φ : E → E

be an automorphism of E which induces the identity on A and G. We can consider the map
E → A defined by u → φ(u)u−1; one shows that it is induced by a map ψ : G → A such that
φ(u) = ψ([u])u where [u] ∈ G is the image of u. One can show that ψ is a crossed morphism
and we obtain an isomorphism between the automorphisms of E which induce the identity on
A and G and the group Z1(G,A) of the crossed homomorphisms mapping φ to ψ. Finally, the
result follows noticing that φ is given by conjugation by an element of A if and only if ψ is a
boundary.

4.2 Connected component of the identity on the automorphism group
Let k be a field and G := Spec(A) an affine well split group scheme over k. Denote by ∆

the connected component of the identity of G, H = G/∆ and by Autk(G) the group scheme
which represents the automorphisms of G as a group scheme. Thus there is a homomorphism
∆→ Autk(G) mapping every section of ∆ to the inner automorphism of G which induces the
embedding ∆/∆H ⊆ Autk(G), where ∆H represents the H-invariants of ∆.
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Lemma A.14. ([AOV08, Lemma 2.19]) The connected component of identity of Autk(G) is
∆/∆H .

Proof. We know that ∆ is a characteristic subgroup of G meaning that all automorphisms of
GD → Spec(D), where D is a k-algebra, stabilize ∆D. This defines an homomorphism of group
schemes Autk(G)→ Autk(∆) and thus, Autk(G)→ Autk(H), inducing a homomorphism

Autk(G)→ Autk(∆)× Autk(H)

Denote by E the kernel of this homomorphism. We notice that it contains ∆/∆H which is
connected. As Autk(∆) × Autk(H) is étale over Spec(k) by [Wat79, 7.6], if we consider the
connected-étale sequence of Autk(G), it is enough to prove that E coincides with ∆/∆H , so
that the inclusion ∆/∆H → E is surjective, or in other words, for all k-algebra D and for all
α ∈ E(D), there is an extension D0 of D faithfully flat such that the image of α in E(D0)
comes from ∆/∆H(D0).
As H is constant, one can find a faithfully flat extension D0 of D such that G(D′)→ H(D′) is
surjective for all D0-algebra D′, which allows us to write the following exact sequence

1→ ∆(D′)→ G(D′)→ H(D′)→ 1

Moreover, since H is constant we can show that for any D0-algebra D′, ∆H(D′) = ∆(D′)H(D′).
This defines the injective morphism ∆(D′)/∆(D′)H(D′) → (∆/∆H)(D′). As the group ∆(AD0)
has an exponent which is a power of the characteristic of k while the one of H(AD0) is prime
to the characteristic of k, we obtain that H1(H(AD0),∆(AD0)) = 0. But, the image of α in
Aut(G(AD0)) by the following natural diagram

1→ E(AD0) // AutAD0
(GAD0

) //

��

AutAD0
(∆AD0

)× AutAD0
(HAD0

)

��
Aut(G(AD0)) // Aut(∆(AD0))× Aut(H(AD0))

is an automorphism of G(AD0) which becomes trivial over ∆(AD0) and H(AD0). The previous
lemma insures the existence of an element δAD0

of ∆(AD0) such that the automorphism of
G(AD0) induced by conjugation by δAD0

coincides with the image of α in Aut(G(AD0)).
Write δAD0

for the image of δAD0
in (∆/∆H)(D0). It is enough to prove that δAD0

is the image
of one element δ of (∆/∆H)(D0), then the image of δ in E(D0) coincides with the image of α in
E(D0), because one can prove that the natural restriction morphism AutA(GA)→ Aut(G(AD0))
is injective. Since (∆/∆H)(D0) is the equalizer of the two natural maps

(∆/∆H)(AD0) ⇒ (∆/∆H)(AD0 ⊗D AD0)

we have to prove that the two images of δAD0
in (∆/∆H)(AD0 ⊗D AD0) coincide.
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If we consider the following commutative diagram where the horizontal sequences are exact,

1 // E(D0) //

��

E(AD0) // //

��

E(AD0 ⊗D AD0)

��
1 // AutD0(GD0) // AutAD0

(GAD0
) //// AutAD0⊗DAD0

(GAD0⊗DAD0
)

we show that the two images of δAD0
coincide in Aut(G(AD0 ⊗D0 AD0)) (recall that the image

of δAD0
in Aut(G(AD0)) coincides with the one of α). The result follows from the following

diagram:

∆(AD0 ⊗D0 AD0)
	

//

�� )) ))

∆/∆H(AD0 ⊗D0 AD0)

Aut(G(AD0 ⊗D0 AD0)) ∆(AD0 ⊗D0 AD0)/∆(AD0 ⊗D0 AD0)H(AD0⊗D0AD0 )? _oo

	
?�

OO
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Appendix B

Generality about stacks

For precisions, the reader can refer to [sta05] or [LMB00]. This chapter tries to give all
the ingredients around stacks sufficient to understand this thesis. Let S be a scheme, and let
S = (sch/S) be the category of schemes over S.

1 Algebraic spaces
Definition B.1. An algebraic space over S is a sheaf of sets X over (Sch/S)Et such that:

1. The diagonal ∆X/S : X→ X×S X is representable by a quasi-compact scheme;
2. There is an étale and surjective map U → X called an atlas where U is a scheme.

2 Groupoids

2.1 Definitions

Definition B.2. A category over S, denoted by (X, pX), is a category X together with a
covariant functor pX : X→ S. If B is an object of S, we say that X lies over B if pX(X) = B.

Definition B.3. A category (X, pX) over S is a groupoid over S if the following conditions
are satisfied:

1. If f : B′ → B is a morphism in S, and X is an object of X lying over B, then there are
an object X ′ over B′ and a morphism φ : X ′ → X such that pX(φ) = f .

2. Let X, X ′, X ′′ be objects of X lying over B, B′, B′′ respectively. If φ : X ′ → X and
ψ : X ′′ → X are morphisms in X, and h : B′ → B′′ is a morphism such that pX(ψ) ◦ h =
pX(φ) then there is a unique morphism λ : X ′ → X ′′ such that ψ ◦ λ = φ and pX(λ) = h.

Definition B.4. 1. For some B ∈ S, define the subcategory X(B) whose object X are such
that pX(X) = B and whose morphisms f are such that pX(f) = idB. X(B) is called the
fiber over B.
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2. By 2., the object X ′ over B′ of condition (1) of the previous definition is unique up to
isomorphism. This object is called the pull-back of X via f and denoted by f ∗X.
Moreover, if s : X → Y is a morphism in X(B) then there is a canonical morphism
f ∗s : f ∗X → f ∗Y . In other words, given a morphism f : B′ → B of S-schemes, there is
an induced covariant functor f ∗ : X(B)→ X(B′).

Remark B.5. We show thanks to condition 2. that a morphism φ : X ′ → X (where X and
X ′ are respectively over B and B′) is an isomorphism if and only if pX(φ) : B′ → B is an
isomorphism. We can then notice that the fiber X(B) is a groupoid (i.e. a category where all
the morphisms are isomorphisms), which explains the terminology.

2.2 Morphisms of groupoids

Definition B.6. 1. If (X1, pX1) and (X2, pX2) are groupoids over S then a morphism of
groupoids X1 → X2 is a functor p : X1 → X2 such that p ◦ pX2 = pX1.

2. A morphism of groupoids p is called an isomorphism of groupoids if it is an equiva-
lence of categories.

Remark B.7. An isomorphism of groupoids has no inverse but has a quasi-inverse. The
groupoids over S form a 2-category whose objects are the groupoids, 1-morphisms are the func-
tors and 2-morphisms are the natural isomorphisms of functors. (The category of groupoids
contains extra information about isomorphisms between morphisms.)

2.3 Fibered products and cartesian diagrams

Definition B.8. 1. Let X, Y and Z be groupoids over S. If f : X → Z and h : Y → Z are
morphisms of groupoids then we define the fibered product X ×Z Y as the S-groupoid
whose:

(a) objects are the triples (x, y, ψ) where (x, y) ∈ X(B) × Y(B) and ψ : f(x) → h(y) is
an isomorphism in Z(B), with B fixed in S,

(b) the morphisms between two objects (X, Y, ψ) where (X, Y ) ∈ X(B) × Y(B) and
(X ′, Y ′, ψ′) where (X ′, Y ′) ∈ X(B′) × Y(B′) is a pair of morphisms α : X ′ → X,
β : Y ′ → Y over a same morphism B → B′ such that ψ ◦ f(α) = g(β) ◦ ψ′.

By construction, there are functors p : X×Z Y→ X and q : X×Z Y→ Y. Notice however
that the following diagram is non-commutative:

X×Z Y //

��

Y

��
X // Z
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In fact, f ◦ p(X, Y, ψ) = f(X), g ◦ q(X, Y, ψ) = g(Y ) and the objects f(X) and g(Y ) are
isomorphic but not necessarily equal. Such a diagram is called 2-commutative.
More generally, given a 2-commutative diagram of groupoids

T //

��

Y

��
X // Z

there is a morphism T → X ×Z Y unique up to isomorphism. If this morphism is an
isomorphism then the diagram is called 2-cartesian.

3 Stacks

3.1 The functor of isomorphisms
Let (X, PX) be an S-groupoid. Let B be an S-scheme and let X and Y be two objects

of X(B). We defined the contravariant functor IsoB(X, Y ) : (Sch/B) → (Sets). Let (B′, f)
be a B-scheme f : B′ → B. The set IsoB(X, Y )(B′, f) is the set of the isomorphisms in
X(B′) between f ∗X and f ∗Y . Let now f : B′ → B and g : B′′ → B be two B-schemes
and h : B′′ → B′ be a morphism of B-schemes (i.e. g = f ◦ h ), we need to define a map
IsoB(X, Y )(h) : IsoB(X, Y )(B′, f)→ IsoB(X, Y )(B′′, g). First, notice that by construction of
the pullback, we have the canonical isomorphisms ψX : g∗X → h∗f ∗X and ψY : g∗Y → h∗f ∗Y .
Let φ : f ∗X → f ∗Y be an isomorphism in IsoB(X, Y )(B′, f) and consider its image by the
functor h∗ : X(B′) → X(B′′). We obtain an isomorphism h∗φ : h∗f ∗X → h∗f ∗Y . Define the
image of φ via IsoB(X, Y )(h) in IsoB(X, Y )(B′′, g) to be the composite ψ−1

Y ◦ h∗φ ◦ ψX . In
particular, if X = Y then IsoB(X,X) is the functor whose sections over B′ mapping on B are
the automorphisms of the pull-back of X on B′.

3.2 Definition
Definition B.9. A groupoid (X, pX) over S is a stack if :

1. IsoB(X, Y ) is a sheaf for the étale topology for any S-scheme B and X, Y in X(B).
2. If {Bi → B} is a covering of B for the étale topology and Xi is a collection of objects in

X(Bi) with isomorphisms
φi,j : Xj|Bi×BBj → Xi|Bi×BBj

in X(Bi ×B Bj) satisfying the cocycle condition, then there is an object X ∈ X(B) with
an isomorphism X|Bi ' Xi inducing the isomorphisms φi,j above.

Remark B.10. 1. The algebraic spaces give an example of stacks.
2. If X, Z and Y are stacks over S then the fibered product X×Z Y is also a stack.
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3.3 Yoneda lemma for stacks
Lemma B.11. Let X be a stack and X be an algebraic space. Then, there is an equivalence of
categories

φX : X(X) 'MorStacks(X,X)

Proof. Let P ∈ X(X) and define a map FP : X → X by

FP (Y ) : X(Y ) → X(Y )
f : Y → X 7→ f ∗P

For any isomorphism φ : P ′ → P ∈ X(X), define a natural transformation Aφ : FP → FP ′

by f ∗φ : f ∗P → f ∗P ′. Conversely, consider a morphism F : X → X, we obtain an object
PF := F (X)(IdX) ∈ X(X). An automorphism of F defines an isomorphism of PF . We can
then show that these two maps are inverses of each other.

3.4 Schemes as stacks
If X is an S-scheme then its functor of points gives a groupoid X whose objects are the

X-schemes (B, φ) where φ : B → X and a morphism from an object (B′, φ′) to an object (B, φ)
is a morphism f : B′ → B such that φ ◦ f = φ′. The functor pX is the forgetful functor which
passes from the X-structure to the S-structure.
Take f : X → Y a scheme morphism, it induces a groupoid functor F : X → Y in the following
way. The objects of X are X-schemes, which via the morphism f , can be seen as Y -schemes,
that means the objects of Y . Thus, F ((U, u)) = (U, f ◦ u). If s : B → B′ is a morphism of
X-schemes, then F (s) is the morphism s seen as a morphism of Y -schemes. Conversely, for
F : X → Y a groupoid morphism over S, we set f := p(idX) : X → Y . The Yoneda lemma
implies that F = f ◦ −.
The functor of points for a scheme is then a stack since condition 1. of the definition of stack is
trivially satisfied and condition 2. is equivalent to say that the functor of points is a sheaf for
the étale topology (see [FGI+05, theorem 2.55]).

Proposition B.12. Let X and Y be S-schemes. Then, there is an isomorphism f : X → Y if
and only if there is an equivalence of S-groupoids F : X → Y .

Proof. If f is an isomorphism, denote by F : X → Y the induced functor as defined previously
and by F0 : Y → X the functor induced by f−1. We can easily show that F ◦ F0 = idY and
F0 ◦ F = IdX . Conversely, suppose that F : X → Y is an isomorphism of groupoids, set
F−1 : Y → X its quasi-inverse and f : X → Y (resp. f0 : Y → X) the S-morphism inducing
F (resp. F0). Then, F0 ◦ F (IdX) = g ◦ f . Since F ◦ F0 and IdX are naturally isomorphic,
IdX : X → X and g ◦ f : X → X are also isomorphic as X-schemes. So, g ◦ f : X → X is an
automorphism. Using the same argument, we show that f ◦ g : X → X is an automorphism.
Finally, f : X → Y is an isomorphism.
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Remark B.13. 1. In the following, when B is a scheme, we write simply B → X (resp.
X→ B) instead of B → X (resp. X→ B).

2. If X, Y and Z are schemes then X ×Z Y is isomorphic to X ×Z Y so this notion of the
fiber product is an extension of the usual one for schemes.

3. The notion of fiber product allows us to talk about base change. Indeed, suppose that X is
an S-groupoid and T → S a morphism of schemes. Then if U → T is a T -scheme, one
can check that the groupoids X(U) and (X ×S T )(U) are equivalent; i.e. X ×S T is the
T -groupoid obtained by base change to T .

3.5 Artin stacks
Definition B.14. An Artin stack over S is a stack X over (Sch/S)Et such that:

1. the diagonal ∆X/S : X→ X×S X is representable, separated and quasi-compact;
2. there is a smooth and surjective map U → X where U is a scheme called atlas.

Remark B.15. In particular, an Artin stack is quasi-separated.

We end this section with the Artin criterion giving a sufficient condition for a stack to be
an Artin stack.

Theorem B.16. ([LMB00, Théorème 10.1]) Let X be a S-stack satisfying the following axioms:
1. the diagonal morphism ∆ : X→ X×S X is representable, separated and quasi-compact;
2. there is an algebraic space Y over S with a morphism of S-stacks Y→ X which is repre-

sentable, faithfully flat and locally finitely presented.
Then X is a Artin stack over S.

3.6 Group of automorphisms
Definition B.17. Given an Artin stack X and a morphism f : T → X where T is a scheme,
we define the group of automorphism of f , denoted AutT (f), as the fiber product:

AutT (f)

��

// T

f

��
IX

p2 // X

where IX, called inertia stack, is defined as the fiber product

IX

��

// X

∆X/S

��
X

∆X/S // X×S X

117



Generality about stacks

Remark B.18. 1. The inertia stack represents the functor of isomorphisms (i.e. the fibered
category over S whose objects over some S-scheme U are the pairs (ξ, α) where ξ ∈ X(U)
and α is an automorphism of ξ).

2. Let Spec(T ′)→ Spec(T ) be a morphism of schemes, let f : Spec(T )→ X be a T -point of
X and let f ′ : Spec(T ′)→ Spec(T )→ X be associated T ′-point. Then

AutT (f ′) = AutT (f)×Spec(T ) Spec(T ′).

3.7 Characterization of algebraic spaces via stacks
Theorem B.19. ([LMB00, Corollaire 8.1.1]) Let X be an Artin stack and ∆ : X→ X×S X be
the 1-diagonal map. The following assertions are equivalent:

1. The Artin stack X is an algebraic space.
2. For any affine scheme U over S and any morphism x : U → X, AutX(U)(x) = {Idx}.
3. The morphism ∆ is a monomorphism of stacks.

3.8 Representable morphisms of algebraic stacks
In the following, C denotes the category of schemes or the one of algebraic spaces.

Definition B.20. A morphism f : X → Y of stacks is said to be representable in C if for
any morphism B → Y where B is an object of C, the fiber product X×Y B is isomorphic to an
object of C.

Definition B.21. 1. We say that a morphism of Artin stacks f : X → Y representable in
C has a property P if for any map B → Y, where B is an object of C, the corresponding
morphism X×Y B → B of C has property P .

2. Let X be a stack. For a property of schemes local for the smooth topology (for example,
locally noetherian, quasi-compact, (quasi)-separated, surjective...), we say that the stack
X has this property if there is a scheme U with this same property and a smooth and
surjective morphism U → X.

Lemma B.22. Let f : X→ Y be a morphism of algebraic stacks. The following are equivalent:
1. The morphism f is representable;
2. For any T → S and any object ξ of X(T ), the induced homomorphism AutT (ξ) →

AutT (f(ξ)) is injective.

Proof. By Theorem B.19, the morphism f : X → Y is representable if and only if for any
algebraic space V and any morphism g : V → Y for F := X ×Y V , we have that the diagonal
map ∆ : F → F ×S F is a monomorphism.
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Let T be an S-scheme, q ∈ F ×S F(T ) and take two elements pi ∈ F(T ) (where i = 1, 2),
with isomorphisms βi : ∆(pi) → q. There exists a unique isomorphism φ : p1 → p2 such that
β1 = β2 ◦∆(φ).
We can write

q = ((x1, v1, α1), (x2, v2, α2))

where xi ∈ X, v1 ∈ V and αi : f(xi) ' g(vi). Similarly pi = (x′i, v′i, α′i) as above. The existence
of βi implies that v1 = v2 = v′1 = v′2. Also, composing with the given isomorphisms we may
reduce to the case in which in fact, the same is true for xi, x′i, αi and α′i. Thus, the condition
above is equivalent to saying that for x ∈ X(T ), there is a unique β ∈ AutT (x) such that
f(β) = Idf(x), which is what we wanted.

4 Sheaves on Artin stacks
The goal of this section is to give a brief overview about the notion of sheaves on Artin

Stacks and required knowledge about simplicial topoi and derived categories. The reader can
find details and proof in the article of Olsson [Ols07].
If A is an abelian category, we denote by D+(A) (respectively D−(A), Db(A)) the derived
category of complexes bounded below (respectively bounded above, bounded below and above).
For n ∈ Z, we denote τ≥n the "canonical truncation in degree ≥ n" functor (see [SGA73, VII.
Définition 1.1.13]). Let D′(A) denote the category of projective systems

K = (...→ K≥−n−1 → K≥−n → ...→ K≥0)

where each K≥−n ∈ D+(A) and the maps

K≥−n → τ≥−nK≥−n, τ≥−nK≥−n−1 → τ≥−nK≥−n

are all isomorphisms.

4.1 The lisse-étale site on an algebraic stack
Let X be an algebraic stack. We will define a site on X which will permit to have a notion

of Cech cohomology for this site.

Definition B.23. The lisse-étale site of X, denoted Lis-ét(X), is the site with underlying
category the full subcategory of X-schemes whose objects are the smooth X-schemes and whose
covering families {Ui → U}i∈I are families of étale morphisms such that the amalgamation∐

i∈I
Ui → U
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is surjective . We denote by XLis-ét the associated topos. The topos XLis-ét is naturally ringed
with structure sheaf OXLis-ét which associates to any U ∈Lis-ét(X) the ring Γ(U,OU).

Remark B.24. A sheaf F ∈ XLis-ét defines for every object U ∈ Lis-ét(X) a sheaf FU on Uet
by restriction. As proved in [LMB00, 12.2.1], this gives an equivalence of categories between
the category of sheaves XLis-ét and the category of systems {FU , θφ} consisting of the following
things: a sheaf FU ∈ Uét for every U ∈ Lis-ét(X) and a morphism θφ : φ−1FV → FU for every
morphism φ : U → V in Lis-ét(X), such that

1. θφ is an isomorphism if φ is étale.
2. For a composite

U
φ // V

ψ //W

We have θφ ◦ φ∗(θψ) = θψ◦φ.

Definition B.25. Let f : X→ Y be a quasi-compact morphism of algebraic stacks, and define
the direct image functor f∗ to be the functor defined by sending a sheaf M to the sheaf which
to any U ∈ Lis-ét(X) associates M(U ×X Y), and the inverse image functor f−1 to be the
functor defined by sending a sheaf N to the sheaf which to any V ∈ Lis-ét(X) associates the
limit lim−→V→U M(U). Here the limit is taken over the category of morphisms over f from V to
the objects U ∈ Lis-ét(X).

4.2 Quasi-coherent sheaves on stacks
The theory for schemes is recalled in appendix B.

Definition B.26. 1. A quasi-coherent sheaf M on X is given by:
(a) for each atlas U → X, a quasi-coherent sheaf MU over U ;
(b) for each commutative diagram

U
φ //

��

V

��
X

in Lis-ét(X) where U are V atlases, an isomorphism αφ : MU → φ∗MV .
2. If X is locally noetherian, a quasi-coherent sheaf M is called coherent if for every U ∈

Lis-ét(X) the restriction MU of M to U is a coherent sheaf.

We write Qcoh(X) (respectively Coh(X)) for the category of quasi-coherent (respectively
coherent) sheaves on X.

Proposition B.27. ([Ols07, Lem. 6.5(i)]) Let f : X → Y be a quasi-compact morphism of
algebraic stacks and denote by f ∗ the functor f−1(−)⊗f−1OY

OX
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1. For any quasi-coherent sheaf M ∈ Qcoh(X), the sheaf f ∗M is a quasi-coherent sheaf on
Y.

2. For any quasi-coherent sheaf N on Y the sheaf f ∗N is quasi-coherent on X. The induced
functor f ∗ : Qcoh(Y)→ Qcoh(X) is left adjoint to the functor f∗ : Qcoh(X)→ Qcoh(Y).

For ∗ ∈ {b,+,−, [a, b]}, we write D∗qcoh(X) ⊂ D∗qcoh(XLis-ét,OXLis-ét) for the full subcategory of
objects whose cohomology sheaves are quasi-coherent sheaves. We will consider the subcategory
D′qcoh(X) ⊂ D′(X) consisting of systems K for which K ≥ −n is in D+

qcoh(X) for all n. If X
is locally noetherian, we also define D∗coh(X) ⊂ D∗qcoh(X) to be the full subcategory of objects
with coherent cohomology sheaves.

Proposition B.28. ([Ols07, Proposition 6.4])
1. If M and N are quasi-coherent sheaves on X, then M⊗OX

N is also a quasi-coherent sheaf.
More generally, (−)⊗L

OX
(−) induces a functor:

(−)⊗L
OX

(−) : D−qcoh(X)×D−qcoh(X)→ D−qcoh(X)

2. If X is locally noetherian, then (−)⊗L
OX

(−) induces a functor

(−)⊗L
OX

(−) : D−coh(X)×D−coh(X)→ D−coh(X)

3. If X is locally noetherian, then RHomOX
(−,−) induces functors

RHomOX
(−,−) : D−coh(X)×D+

qcoh(X)→ D+
qcoh(X)

RHomOX
(−,−) : D−coh(X)×D+

coh(X)→ D+
coh(X)

4.3 The cotangent complex of a morphism of algebraic stacks
Theorem B.29. ([Ols07, Theorem 8.1]) Let f : X→ Y be a quasi-compact and quasi-separated
morphism of algebraic stacks. Then one can associate to f an object LX/Y ∈ D′qcoh(XLis-ét) called
cotangent complex of f such that the following holds:

1. If X and Y are algebraic spaces, then the complex LX/Y is canonically isomorphic to the
object {τ≥−nπ∗LX/Y,ét}n, where π : XLis-ét → Xét denotes the projection to the étale topos
and LX/Y,ét denotes the usual cotangent complex of the morphism of ringed topoi Xét → Yét.

2. For any 2-commutative square of algebraic stacks

X′

f ′

��

A // X

f
��

Y′
B // Y
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there is a natural functoriality morphism

LA∗LX/Y → LX′/Y′

If the square is cartesian and either f or B is flat then this functoriality morphism is an
isomorphism, and the sum map

LA∗LX/Y ⊕ Lf ′∗LY′/Y → LX′/Y

is an isomorphism.
3. If g : Y→ Z is another morphism of algebraic stacks, then there is a natural map

LX/Y → Lf ∗(LY/Z)[1]

such that
Lf ∗LY/Z → LX/Z → LX/Y → Lf ∗LY/Z[1]

is a distinguished triangle in D′qcoh(XLis-ét).

In particular, the cotangent complex of the canonical morphism BSG→ S has the following
property, for any fppf group scheme.

Lemma B.30. Let G→ S be an fppf group scheme. Denote by LBSG/S the cotangent complex
(see Theorem B.29) of the structural morphism BSG→ S and by LG/S the cotangent complex
LG of the group scheme G. We consider the following 2-cartesian diagram:

G
q //

��

S

p

��
S p

// BSG

where q is the structural morphism of G and p is the canonical morphism.
We have q∗p∗LBSG/S ' LG and thus LBSG/S ∈ D

[0,1]
coh (OBSG). If we suppose that G is smooth,

LG ' g∗ where g∗ is the dual of the Lie algebra of the group scheme G, hence LBSG/S ∈
D

[0]
coh(OBSG).

Proof. Since the map p is faithfully flat, it suffices to show that p∗LBSG/S has cohomology
concentrated in degree 0 and 1. Applying Theorem B.29 3. to the composite map

S
p // BSG // S

one obtains the following distinguished triangle

p∗LBSG/S
// LS/S // LS/BSG

// p∗LBSG/S[1]
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From the fact that LS/S = 0, we see that p∗LBSG/S ' p∗LS/BSG[−1]. Therefore it suffices to
show that LS/BSG is concentrated in degrees −1 and 0. Considering the cartesian diagram of the
proposition and applying Theorem B.29 2., we obtain that q∗LS/BSG ' LG/S thus q∗p∗LBSG/S '
LG. Moreover, since q is faithfully flat, it suffices to prove that LG/S is concentrated in degrees
−1 and 0. This follows from the fact that any fppf group is a local complete intersection and
we complete the proof thanks to [Ill71, III.3.2.6].

4.4 The Grothendieck existence theorem for stacks
Theorem B.31. ([Ols07, Theorem 11.1]) Let A be a noetherian adic ring and let a ⊂ A be an
ideal of definition. Let X be a proper algebraic stack over A, and for every n ≥ 0, let Xn denote
the stack X×Spec(A) Spec(A/an+1).

1. The functor sending a coherent sheaf to its reductions over Spec(A/an+1) for any n,
defines an equivalence of categories between the category of coherent sheaves on X and the
category of compatible system {Mn}n≥0 of coherent sheaves on the X′ns.

2. If M is a coherent sheaf on X with reduction {Mn}n≥0 then for every i ≥ 0 the natural
map

H i(X,M)→ lim←−
n

H i(Xn,Mn)

is an isomorphism. If the finitely generated A-module is viewed as a topological A-module
with the a-adic topology and lim←−nH

i(Xn,Mn) is viewed as a topological A-module with the
inverse limit topology, then this is an isomorphism of topological A-modules.
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5 Deformation for representable morphisms of algebraic
stacks

5.1 Deformation via closed immersions defined by a square zero
ideal

Let x : X → Y be a representable morphism of algebraic stacks. Suppose that x fits into a
2-commutative diagram of solid arrows between algebraic stacks

X
i //

h

��

x

��

X′

x′

  

h′

��

Y
j //

g

��

Y′

g′

��
Z

k // Z ′

where Z and Z ′ are schemes, and i (respectively j, k) is a closed immersion defined by a
square-zero sheaf of ideals I ⊂ OX′ (respectively J ⊂ OY′ , K ⊂ O′Z).

Theorem B.32. (see [Ols06, Theorem 1.5]) Let LY/Z denote the cotangent complex of g : Y→
Z.

1. There is a canonical class o(x, i, j) ∈ Ext1(Lx∗LY/Z , I) whose vanishing is necessary and
sufficient for the existence of an arrow x′ : X′ → Y′ filling the previous diagram.

2. If o(x, i, j) = 0, then the set of isomorphism classes of maps x′ : X′ → Y′ filling the
previous diagram is naturally a torsor under Ext0(Lx∗LY/Z , I).

3. For any morphism x′ : X′ → Y′ the group of automorphisms of x′ (as a deformation of x)
is canonically isomorphic to Ext−1(Lx∗LY/Z , I).

Let P → X be a G-torsor, i : X→ X′ be a closed immersion of stacks defined by a square-
zero sheaf of ideals I ⊂ OY′ and let k : Z → Z ′ be a closed immersion of schemes defined by a
square-zero ideal K ⊂ O′Z .

Corollary B.33. Let LBZG/Z denote the cotangent complex of the structural map g : BZG→ Z.
1. There is a canonical class o(x, i, j) ∈ Ext1(LBZG/Z , I/I2) whose vanishing is necessary

and sufficient for the existence of a G-torsor P ′ → X′ which lifts the G-torsor P → X.
2. If o(x, i, j) = 0, then the set of isomorphism classes of the G-torsor P ′ → X′ extending

the G-torsor P → X is naturally a torsor under Ext0(LBZG/Z , I/I2).
3. For any morphism P ′ → X′, the group of automorphisms of the G-torsor P ′ → X′ (as a

deformation of the G-torsor P → X) is canonically isomorphic to Ext−1(LBZG/Z , I/I2).
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Proof. It is enough to notice that the data of a G-torsor P → X is equivalent to the data
of a representable morphism of stacks X → BZG. Indeed, if one has a G-torsor P → X

then [P/G] ' X, which defines naturally a representable morphism X → BZG. Conversely, a
representable morphism of stacks x : X→ BZG defines a G-torsor as the pullback of the trivial
G-torsor Z → BZG to X via x.

5.2 Formal deformations

Let now x0 : X0 → Y0 be a representable morphism of algebraic stacks. Suppose that x0

fits into a 2-commutative diagram of solid arrows between algebraic stacks

X0
i //

h

��

x

  

X

x′

��

h′

��

Y0
j //

g

��

Y

g′

��
Z0

k // Z

where Z0 and Z are schemes, and i (respectively j, k) is a closed immersion defined by the
sheaf of ideals I ⊂ OX (respectively J ⊂ OY, K ⊂ OZ). One can show that if x′ exists then it is
necessarily representable. Denote by Xn the closed substack of X (respectively Yn, Zn) whose
sheaf of ideals is In+1 (respectively Jn+1, Kn+1). One obtains the following diagram

X0
i1 //

h0

��

x0

  

X1 //

h1

��

x1

  

Xn−1
in //

hn−1

��

xn−1

##

Xn

xn

  

hn

��

Y0
j1 //

g0

��

Y1 //

g1

��

Yn−1
jn //

gn−1

��

Yn

gn

��
Z0

k1 // Z1 // Zn−1
kn // Zn

where each cube verifies the condition of the previous section.

Definition B.34. We call a formal deformation of x0 the data of morphisms xn filling in
the previous diagram for any n ∈ N.

So, one can use step after step Theorem B.32 for the existence of a formal deformation.
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5.3 Algebraization of formal deformations

Denote by S = Spec(R) a scheme where R is a strict local henselian ring of maximal ideal
m, by k = R/m its residue field, Sn = Spec(R/mn+1) and k : Spec(k) → S the natural closed
immersion.
Let now x0 : X0 → Y0 be a representable morphism of algebraic stacks. Suppose that x0 fits
into a 2-commutative diagram of solid arrows between algebraic stacks

X0
i //

h

��

x0

##

X

x

��

h

��

Y0
j //

g

��

Y

g

��
Spec(k) y // S

where i (respectively j) is a closed immersion defined by the sheaf of ideals I ⊂ OX (respectively
J ⊂ OY). We consider the (contravariant) functor

F : (Algebras/R)→ (Sets)

sending anR-algebraA to the set of morphisms of algebraic stacks X×SSpec(A)→ Y×SSpec(A)
over Spec(A). Thanks to the Existence Theorem of Grothendieck for stacks B.31, One can show
that this functor is locally of finite presentation, (that is, for every filtering inductive system
of R-algebras {Bi}, the canonical map lim←−F (Bi)→ F (lim←−Bi) is bijective).
Suppose that one has a formal deformation xn filling in the following diagram:

X0
i1 //

h0

��

x0

  

X1 //

h1

��

x1

  

Xn−1
in //

hn−1

��

xn−1

##

Xn

xn

  

hn

��

Y0
j1 //

g0

��

Y1 //

g1

��

Yn−1
jn //

gn−1

��

Yn

gn

��
S0

k1 // S1 // Sn−1
kn // Sn

The purpose is to see if one can can obtain the existence of the morphism x : X→ Y filling in
the first diagram, algebraizing the formal deformation. One of the tools which can lead to such
a result is Artin’s Approximation theorem which is valid when R is the henselization of a finite
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type algebra over an excellent discrete valuation ring or a field.

Theorem B.35. (see [Art69, Théorème 1.12]) Let K be a field or an excellent discrete valuation
ring, and let R be the henselization of a K-algebra of finite type at a prime ideal. Let m a proper
ideal of A and F : (R-algebras)→ (Sets) be a functor locally of finite presentation and so that
for every A-algebra B, F (B) is the set of isomorphism classes of structures over B. Given
ξ̄ ∈ F (R̂) there is a ξ ∈ F (R) such that

ξ ≡ ξ̄ (mod mn)

for any n ∈ N.

In order to be able to apply this theorem to obtain an algebraization of some formal data,
we can see R as limit of rings Ri which are henselizations of Z-algebras of finite type. Since the
functor F is locally of finite presentation, one can see that it suffices to prove the theorem in
the case where R is the henselization of a Z-algebra of finite type. Using again the Existence
Theorem of Grothendieck for stacks B.31 to go to the completion, one can then obtain the
morphism x via the Artin’s Approximation theorem.
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Résumé en Français (Version longue):

Ramification modérée pour des actions par des schémas en groupes affines et
pour des champs quotients

L’objet de cette thèse est de comprendre comment se généralise la théorie de la ramification
pour des actions par des schémas en groupes affines avec un intérêt particulier pour la notion
de modération.

Dans la suite, les schémas considérés seront affines sur une base affine. Plus précisément, la
base sera S := Spec(R) où R est un anneau commutatif unitaire, G = Spec(A) sera un schéma
en groupes affine plat sur S et X := Spec(B) sera un schéma affine sur S. La donnée d’une
action de G sur X définie par un morphisme µX : X×SG→ X est équivalente à la donnée d’un
B-comodule défini par le morphisme structural, que l’on notera ρB : B → B ⊗R A. On notera
cette action (X,G). On notera C := BA = {b ∈ B | ρB(b) = b ⊗ 1} l’anneau des invariants
pour l’action, (µX , p1) : X ×S G → X ×S X l’application de Galois, [X/G] le champ quotient
associé à l’action (X,G) et Y := Spec(C).

Comme point de référence, nous prenons la théorie classique de la ramification pour des
anneaux munis d’une action d’un groupe fini abstrait qui est l’objet de l’article [Bar74], qui
généralise la théorie de la ramification pour des extensions de corps. Afin de comprendre
comment généraliser cette théorie pour des actions de schémas en groupes, nous considérons
les actions de schémas en groupes constants en se rappelant que la donnée de telles actions est
équivalente à celle d’un anneau muni d’une action par un groupe fini abstrait, nous ramenant au
cas classique. Nous obtenons ainsi dans ce nouveau contexte des notions généralisant l’anneau
des invariants en tant que quotient, les groupes d’inertie et toutes leurs propriétés. Rappelons
simplement ici la définition indispensable pour la suite de groupe d’inertie dans ce contexte.
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Pour ζ un T -point de X où T est une R-algèbre, on notera IG(ζ) le groupe d’inertie de l’action
au point ζ : Spec(T )→ X, défini comme le produit fibré

IG(ζ) pr2 //

pr1

��

T

∆X◦ζ
��

X ×S G(µX ,p1)
// X ×S X

où p1 est la première projection. Nous montrons que les propriétés classiques des groupes
d’inertie se généralisent bien dans ce nouveau contexte.

Ayant rappelé le contexte propice pour pouvoir parler de ramification, nous pouvons chercher
à distinguer les différents types de ramification. Le cas non ramifié se généralise naturellement
avec les actions libres puisque caractérisées comme dans le cas classique par le fait que tous leurs
groupes d’inertie sont triviaux. Ceci est équivalent, dans le cas où le schéma en groupes agissant
est fini et localement libre à l’existence de torseurs, qui sont des objets localement simples, bien
compris et très importants lorsque l’on considère des actions par des schémas en groupes. En ce
qui concerne le cas de la ramification modérée qui nous intéresse particulièrement, deux général-
isations sont proposées dans la littérature. La première est celle d’actions modérées de schémas
en groupes affines introduite dans l’article [CEPT96] par Chinburg, Erez, Pappas et Taylor,
définies via l’existence d’une intégrale totale. Plus précisément, on dit qu’une action (X,µX) est
modérée s’il existe un morphisme de A-comodules α : A→ B, qui est unitaire, i.e. α(1A) = 1B,
un tel α est appelé intégrale totale. (On rappelle qu’un morphisme α : (B, ρB) → (C, ρC) de
A-comodules est une application R-linéaire telle que ρC ◦ α = (α ⊗ 1B) ◦ ρB. La R-algèbre A
peut être vue comme un A-comodule via la comultiplication ∆ : A → A ⊗R A.) La deuxième
est celle de champ modéré introduite dans [AOV08] par Abramovich, Olsson et Vistoli. Con-
sidérons le champ quotient [X/G] associé à l’action (X,µX). La définition de champ quotient
modéré requiert l’existence d’un espace de modules grossier pour l’action (On rappelle qu’un
espace de modules grossier pour [X/G] est un couple (M,ρ) où M est un espace algébrique
et ρ : [X/G] → M est un morphisme universel pour les morphismes de [X/G] vers un espace
algébrique tel que pour tout corps Ω algébriquement clos, |[X/G](Ω)| ' M(Ω) où |[X/G](Ω)|
est l’ensemble des classes d’isomorphismes du groupoïde). Pour assurer cette existence, nous
supposons dans la suite que le champ quotient [X/G] est un champ algébrique localement de
présentation finie et que tous les groupes d’inertie sont finis. En effet, sous ces hypothèses, on
peut montrer qu’il existe un espace de modules grossier ρ : [X/G]→M et que le morphisme ρ
est propre. On dit alors que le champ [X/G] est modéré si le foncteur entre les catégories de fais-
ceaux quasi-cohérents ρ∗ : Qcoh([X/G])→ Qcoh(M) est exact. Il a été alors naturel d’essayer
de comparer ces deux notions de modération et de comprendre comment se généralisent les
propriétés classiques d’objets modérés à des actions de schémas en groupes affines.
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Tout d’abord, nous avons traduit algébriquement la propriété de modération sur un champ
quotient comme l’exactitude du foncteurs des invariants.

Théorème IX.10. Supposons que le foncteur ρ∗ : Qcoh([X/G]) → Qcoh(Y ) soit bien défini.
Alors le foncteur ρ∗ est exact si et seulement si le foncteur des invariants (−)A est exact.

Ce qui nous a permis d’obtenir aisément à l’aide de [CEPT96] qu’une action modérée définit
toujours un champ quotient modéré.

Théorème IX.15. Supposons que X est noethérien, de présentation finie sur S, que G est de
présentation finie sur S et que tous les groupes d’inertie soient finis. Si l’action est modérée
alors le champ quotient est modéré.

Quant à la réciproque, grâce à une étude algébrique, nous avons réussi à l’obtenir seulement
lorsque nous supposons de plus que G est fini et localement libre sur S et que X est plat sur
Y .

Théorème IX.12. Supposons que G soit fini et localement libre sur S. Si l’action (X,G) est
modérée alors le champ quotient [X/G] est modéré. Si l’on suppose de plus que C soit locale-
ment noethérien et B soit plat sur C, la réciproque est vraie.

Si l’on considère l’action triviale de G sur S avec G fini et localement libre sur S, la notion
de modération introduite par Abramovich, Olsson et Vistoli appliquée au champ classifiant
[S/G] définit une classe de schémas en groupes, on dit dans ce cas que G est linéairement ré-
ductif. De tels schémas en groupes sont pourvus de propriétés intéressantes. L’une d’entre elles
est qu’ils sont localement simples pour la topologie fppf, plus précisément ils sont, après un
changement de base fppf, isomorphes à un produit semi-direct d’un schéma en groupes constant
modéré (c’est-à-dire ayant un ordre premier aux caractéristiques résiduelles) avec un schéma en
groupes diagonalisable. Cette description locale permet d’étendre tout groupe linéaire réductif
au dessus d’un point de S en un groupe linéairement réductif au dessus d’un recouvrement fppf
de S contenant ce point. De ces études faites aussi dans l’article [AOV08], nous avons aussi
réussi à établir que tout schéma en groupes linéairement réductif se relève aussi en tant que
sous-schéma en groupes linéairement réductif dans le sens du théorème suivant:

Théorème VIII.18. Soit p un point de S, G un schéma en groupes fini et plat sur S et H0 un
sous-schéma en groupes fermé, fini, plat et linéairement réductif de Gk(p) sur Spec(k(p)). Alors
il existe un morphisme fppf U → S avec un point q ∈ U s’envoyant sur p et un sous-schéma
en groupes fermé, plat et linéairement réductif H de GU sur U tel que le pull-back Hk(q) soit
isomorphe au pull-back H0k(q).
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La notion de modération pour l’anneau B muni d’une action d’un groupe fini abstrait Γ est
équivalente, si l’on considère l’action du schéma en groupes constant correspondant à Γ sur X,
au fait que tous les groupes d’inertie aux points topologiques soient linéairement réductifs. Il a
été donc naturel de se demander si cette propriété est encore vraie en général. Effectivement,
l’article [AOV08] caractérise le fait que le champ quotient [X/G] soit modéré par le fait que les
groupes d’inertie aux points géométriques soient linéairement réductifs.

À nouveau, si l’on considère le cas des anneaux munis d’une action d’un groupe fini abstrait,
il est bien connu que l’action peut être totalement reconstruite à partir d’une action faisant
intervenir un groupe d’inertie. Lorsque l’on considère le cas des actions de schémas en groupes
constants, cela se traduit comme un théorème de slices, c’est-à-dire une description locale de
l’action de départ (X,G) par une action faisant intervenir un groupe d’inertie. Par exemple,
lorsque G est fini, localement libre sur S, nous établissons que le fait qu’une action soit libre
est une propriété locale pour la topologie fppf, ce qui peut se traduire comme un théorème de
slices « local ». Plus précisément,

Théorème IX.18. Supposons que G soit fini et plat sur S. Soit x ∈ Y et y ∈ Y son image
via le morphisme π : X → Y . Les assertions suivantes sont équivalentes:

1. Le groupe d’inertie au point x est trivial.
2. Il existe un morphisme fppf Y ′ → Y contenant y dans son image tel que l’action (X ×Y

Y ′, GY ′) soit libre.
3. Il existe un morphisme fppf Y ′′ → Y contenant y dans son image et un schéma Z sur

Y ′′ tels que l’action (X ×Y Y ′′, GY ′′) soit induite par l’action triviale (Z, e) où e dénote le
schéma en groupes trivial au dessus de Y ′′.

Grâce à [AOV08], nous savons déjà qu’un champ quotient modéré [X/G] est localement
isomorphe pour la topologie fppf à un champ quotient [X/H] où H est une extension d’un
groupe d’inertie pour l’action en un point de Y . Lorsque G est fini sur S, il nous a été possible
de montrer grâce au théorème VIII.18 que H est aussi un sous-schéma en groupes de G. Dans
la présente thèse, il n’a pas été possible d’obtenir un théorème de slices dans cette généralité.
Cependant, lorsque G est commutatif, fini sur S, si l’on suppose que le champ quotient soit
modéré, il est possible de montrer l’existence d’un torseur.

Proposition IX.23 Supposons que X soit noethérien, de présentation finie sur S, que G soit
commutatif, de présentation finie sur S et que tous les groupes d’inertie soient finis. Si le champ
quotient [X/G] est modéré, alors pour tout point x ∈ X, en notant par y ∈ Y son image par
l’application quotient π : X → Y , il existe un morphisme fppf Y ′ → Y contenant y dans son
image et un sous-schéma en groupes H de GY ′ sur Y ′ relevant le groupe d’inertie en x tels que
l’action (X ×Y Y ′/H, GY ′/H) soit libre. Si l’on suppose de plus que G soit fini, X ×Y Y ′/H
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est un torseur sur Y ′.

Ceci nous a permis de prouver un théorème de slices lorsque G est commutatif, fini sur S
et [X/G] modéré.

Théorème IX.27 Supposons que G soit commutatif et fini sur S. Le champ quotient [X/G]
est modéré si et seulement si pour tout x ∈ X, en tout point x ∈ X, l’action (X,G) est induite
après un changement de base fppf S ′ → S par une action (Z,H) où Z est un schéma sur S ′ et
H est un sous-schéma en groupes de G linéairement réductif relevant le groupe d’inertie en x
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Riassunto in Italiano (Longa versione):

Ramificazione moderata per delle azioni di schemi in gruppi affini e per stacks
quoziente.

Lo scopo di questa tesi è capire come si generalizza la teoria della ramificazione per azioni
di schemi in gruppi affini, con un interesse particolare per la nozione di moderazione.

Nel seguito, gli schemi considerati saranno affini su una base affine. Più precisamente, la
base sarà S := Spec(R), dove R è un anello commutativo unitario, G = Spec(A) sarà uno
schema in gruppi affine piatto su S e X := Spec(B) sarà uno schema affine su S. Il dato di
un’azione di G su X definita da un morfismo µX : X ×S G → X è equivalente al dato d’un
B-comodulo definito dal morfismo strutturale, che denoteremo ρB : B → B⊗RA. Denoteremo
questa azione con (X,G). Denoteremo con C := BA := {b ∈ B | ρB(b) = b ⊗ 1} l’anello
degl’invarianti per l’azione, (µX , p1) : X ×S G → X ×S X l’applicazione di Galois, e [X/G] il
campo quoziente associato all’azione (X,G), e Y := Spec(C).

Come punto di riferimento prendiamo la teoria classica della ramificazione per anelli muniti
d’un’azione d’un gruppo finito astratto, la quale è l’oggetto dell’articolo [Bar74], che generalizza
la teoria della ramificazione per estensioni di campi. Al fine di capire come generalizzare
questa teoria per azioni di schemi in gruppi, consideriamo le azioni di schemi in gruppi costanti
ricordando che il dato di tali azioni è equivalente al dato d’un anello dotato d’un’azione d’un
gruppo finito astratto, il che ci riporta al caso classico. Otteniamo quindi in questo nuovo
contesto delle nozioni che generalizzano l’anello degl’invarianti in quanto quoziente, i gruppi
d’inerzia e tutte le loro proprietà. Ricordiamo qui semplicemente la definizione indispensabile
per la sequenza di gruppi d’inerzia in questo contesto. Dato ζ un T -punto di X dove T è una
R-algebra, denoteremo con IG(ζ) il gruppo d’inerzia dell’azione sul punto ζ : Spec(T ) → X,
definito come il prodotto fibrato

IG(ζ) pr2 //

pr1

��

T

∆X◦ζ
��

X ×S G(µX ,p1)
// X ×S X

,

dove p1 è la prima proiezione. Mostriamo che in effetti le proprietà classiche dei gruppi d’inerzia
si generalizzano in questo nuovo contesto.

Avendo ricordato il contesto più adatto per poter parlare di ramificazione, possiamo cer-
care di distinguere i diversi tipi di ramificazione. Il caso non ramificato si generalizza in
modo naturale con le azioni libere essendo queste caratterizzate come nel caso classico dal
fatto che tutti i loro gruppi d’inerzia sono banali. Ciò equivale, nel caso in cui lo schema in
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gruppi che agisce è finito e localmente libero, all’esistenza di torsori, che sono oggetti local-
mente semplici, conosciuto in dettaglio e molto importanti nell’ambito delle azioni di schemi
in gruppi. Per quanto riguarda il caso della ramificazione moderata, al quale siamo partico-
larmente interessati, due generalizzazioni sono proposte nella letteratura. La prima è quella
delle azioni moderate di schemi in gruppi affini introdotta nell’articolo [CEPT96] da Chinburg,
Erez, Pappas e Taylor, definite tramite l’esistenza d’un integrale totale. Più precisamente, di-
remo che un’azione (X,µX) è moderata se esiste un morfismo di A-comoduli α : A → B che
sia unitario, cioè tale che α(1A) = 1B. Un tale α è chiamato integrale totale. (Ricordiamo
che un morfismo α : (B, ρB) → (C, ρC) di A-comoduli è un’applicazione R-lineare tale che
ρC ◦ α = (α ⊗ 1B) ◦ ρB. La R-algebra A può essere vista come un A-comodulo attraverso la
comoltiplicazione ∆ : A→ A⊗RA.) La seconda generalizzazione è quella di stack moderato in-
trodotta in [AOV08] da Abramovich, Olsson e Vistoli. Consideriamo lo stack quoziente [X/G]
associato all’azione (X,µX). La definizione di stack quoziente moderato richiede l’esistenza
d’uno spazio di moduli grossolano per l’azione (Ricordiamo che uno spazio di moduli grossolano
per [X/G] è una coppia (M,ρ) dove M è uno spazio algebrico e ρ : [X/G]→M è un morfismo
universale per i morfismi di [X/G] verso uno spazio algebrico tale che per ogni campo Ω alge-
bricamente chiuso, |[X/G](Ω)| ' M(Ω) dove |[X/G](Ω)| è l’insieme delle classi d’isomorfismo
del gruppoide). Per garantire questa esistenza, supponiamo nel seguito che lo stack quoziente
[X/G] sia un campo algebrico localmente di presentazione finita e che tutti i gruppi di inerzia
siano finiti. Infatti, sotto queste ipotesi, possiamo mostrare che esiste uno spazio di moduli
grossolano ρ : [X/G] → M e che il morfismo ρ è proprio. Diciamo allora che lo stack [X/G]
è moderato se il funtore tra le categorie di fasci quasi coerenti ρ∗ : Qcoh([X/G]) → Qcoh(M)
è esatto. È stato quindi naturale cercare di confrontare queste due nozioni di moderazione e
capire come si generalizzano le proprietà classiche d’oggetti moderati ad azioni di schemi in
gruppi affini.

Per cominciare, abbiamo interpretato algebricamente la proprietà di moderazione su uno
stack quoziente come l’esattezza del funtore degl’invarianti.

Teorema IX.10. Supponiamo che il funtore ρ∗ : Qcoh([X/G]) → Qcoh(Y ) sia ben definito.
Allora il funtore ρ∗ è esatto se e solo se il funtore degl’invarianti (−)A è esatto.

Ciò ha permesso d’ottenere agevolmente, grazie a [CEPT96], che un’azione moderata definisce
sempre uno stack quoziente moderato.

Teorema IX.15. Supponiamo che X sia noetheriano, di presentazione finita su S, che G sia
di presentazione finita su S e che tutti i gruppi d’inerzia siano finiti. Se l’azione è moderata
allora lo stack quoziente è moderato.

Per quale che riguarda il viceversa, grazie ad uno studio algebrico, siamo riusciti a ottenerlo
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solo nel caso in cui facciamo l’ulteriore ipotesi che G sia finito e localmente libero su S e che
X sia piatto su Y .

Teorema IX.12. Supponiamo che G sia finito e localmente libero su S. Se l’azione (X,G) è
moderata allora lo stack quoziente [X/G] è moderato. Se supponiamo inoltre che C sia local-
mente noetheriano e che B sia piatto su C allora il viceversa è vero.

Se consideriamo l’azione banale di G su S con G finito e localmente libero su S, la nozione di
moderazione introdotta da Abramovich, Olsson e Vistoli applicata allo stack classificante [S/G]
definisce una classe di schemi in gruppi, e in questo caso diciamo che G è linearmente riduttivo.
Tali schemi in gruppi sono dotati di proprietà interessanti. Una di queste è che essi localmente
semplici per la topologia fppf, più precisamente sono isomorfi, dopo un cambiamento di base
fppf, ad un prodotto semidiretto d’uno schema in gruppi costante moderato (cioè il cui ordine
è coprimo con le caratteristiche residuali) e d’uno schema in gruppi diagonalizzabile. Questa
descrizione locale permette d’estendere ogni gruppo lineare riduttivo su un punto di S ad un
gruppo linearmente riduttivo su un ricoprimento fppf di S contenente questo punto. Attraverso
questo studio, fatto anche nell’articolo [AOV08], siamo riusciti a stabilire che ogni schema in
gruppi linearmente riduttivo si rialza anche in quanto sottoschema in gruppi linearmente ridut-
tivo, nel senso del teorema seguente:

Teorema VIII.18. Siano p un punto di S, G uno schema in gruppi finito e piatto su S e H0

un sottoschema in gruppi chiuso, finito, piatto e linearmente riduttivo di Gk(p) su Spec(k(p)).
Allora esiste un morfismo fppf U → S con un punto q ∈ U mandato su p e un sottoschema
in gruppi chiuso, piatto e linearmente riduttivo H di GU su U tale che il pull-back Hk(q) sia
isomorfo al pull-back H0k(q).

La nozione di moderazione per l’anello B munito d’un’azione di un gruppo finito astratto
Γ è equivalente, se consideriamo l’azione dello schema in gruppi costante corrispondente a Γ su
X, al fatto che tutti i gruppi d’inerzia sui punti topologici siano linearmente riduttivi. È stato
quindi naturale domandarsi se questa proprietà è ancora vera in generale. In effetti, l’articolo
[AOV08] caratterizza il fatto che lo stack quoziente [X/G] sia moderato tramite il fatto che i
gruppi d’inerzia sui punti geometrici siano linearmente riduttivi.

Di nuovo, se consideriamo il caso degli anelli muniti d’un’azione d’un gruppo finito astratto,
è ben noto che l’azione può essere totalmente ricostruita a partire da un’azione che fa intervenire
un gruppo d’inerzia. Nel caso delle azioni di schemi in gruppi costanti, ciò s’interprete come
un teorema di slice, cioè una descrizione locale dell’azione di partenza (X,G) tramite un’azione
che fa intervenire un gruppo d’inerzia. Per esempio, quando G è finito e localmente libero su
S, stabiliamo che il fatto che un’azione sia libera è una proprietà locale per la topologia fppf,
il che si può interpretare come un teorema di slice « locale ». Più precisamente,
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Teorema IX.18. Supponiamo che G sia finito e piatto su S. Sia x ∈ Y e sia y ∈ Y l’immagine
di x tramite il morfismo π : X → Y . Le seguenti affermazioni sono equivalenti:

1. Il gruppo d’inerzia al punto x è banale.
2. Esiste un morfismo fppf Y ′ → Y contenente y nella sua immagine e tale che l’azione

(X ×Y Y ′, GY ′) sia libera.
3. Esistono un morfismo fppf Y ′′ → Y contenente y nella sua immagine e uno schema Z su

Y ′′ tali che l’azione (X ×Y Y ′′, GY ′′) sia indotta dall’azione banale (Z, e) dove e denota
lo schema in gruppi banale su Y ′′.

Grazie a [AOV08], sappiamo già che uno stack quoziente moderato [X/G] è localmente iso-
morfo per la topologia fppf a uno stack quoziente [X/H] dove H è un’estensione d’un gruppo
d’inerzia per l’azione in un punto di Y . Quando G è finito su S, ci è stato possibile dimostrare
grazie al teorema VIII.18 che H è altresì un sottoschema in gruppi di G. In questa tesi non è
stato possibile ottenere un teorema di slice in questa generalità. Tuttavia, quando G è commu-
tativo e finito su S, se supponiamo che lo stack quoziente sia moderato, è possibile dimostrare
l’esistenza d’un torsore.

Proposizione IX.23 Supponiamo che X sia noetheriano, di presentazione finita su S, che G
sia commutativo, di presentazione finita su S e che tutti i gruppi di inerzia siano finiti. Se lo
stack quoziente [X/G] è moderato allora per ogni punto x ∈ X, detta y ∈ Y la sua immagine
tramite l’applicazione quoziente π : X → Y , esiste un morfismo fppf Y ′ → Y contenente y
nella sua immagine e un sottoschema in gruppi H di GY ′ su Y ′ che rialza il gruppo di inerzia
in x, tali che l’azione (X ×Y Y ′/H, GY ′/H) sia libera. Se supponiamo inoltre che G sia finito,
X ×Y Y ′/H è un torsore su Y ′.

Questo ci ha permesso di dimostrare un teorema di slice quando G è commutativo e finito
su S e [X/G] è moderato.

Teorema IX.27 Supponiamo che G sia commutativo e finito su X. Lo stack quoziente [X/G]
è moderato se e solo se per ogni x ∈ X, in ogni punto x ∈ X, l’azione (X,G) è indotta, dopo
un cambiamento di base fppf S ′ → S, da un’azione (Z,H), dove Z è uno schema su S ′ e H è
un sottoschema in gruppi di G linearmente riduttivo che rialza il gruppo d’inerzia in x.
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